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Abstract—Visual pattern recognition and classification is a
challenging computer vision problem. Genetic programming has
been applied towards automatic visual pattern recognition. One of
the main factors in evolving effective classifiers is the suitability of
the GP language for defining expressions for feature extraction
and classification. This research presents a comparative study
of a variety of GP languages suitable for classification. Four
different languages are examined, which use different selections
of image processing operators. One of the languages does block
classification, which means that an image is classified as a
whole by examining many blocks of pixels within it. The other
languages are pixel classifiers, which determine classification for
a single pixel. Pixel classifiers are more common in the GP-
vision literature. We tested the languages on different instances of
Brodatz textures, as well as aerial and camera images. Our results
show that the most effective languages are pixel-based ones with
spatial operators. However, as is to be expected, the nature of
the image will determine the effectiveness of the language used.

I. INTRODUCTION

Pattern recognition and classification is a challenging com-
puter vision problem. In basic terms, visual pattern classi-
fication involves the automatic identification of some image
feature of interest. For example, one may want a computer
program to automatically differentiate given different bitmap
images of textures (wood grain, cloth, fur,...). The automatic
recognition of more complex patterns is also possible, for
example, fingerprints, faces, and targets in satellite images.

Genetic programming (GP) has been used in computer
vision classification problems [1]. GP has been shown to
be effective in a variety of image analysis tasks such as
texture classification [2][3] and image and texture segmenta-
tion [3][4][5][6]. GP has also been applied to other complex
computer vision problems, for example, and object detection
[71[8][9], face detection [10], mineral identification [11], and
medical image analysis [12]. More recently, GP has been
applied to real-time computer vision problems in adaptive [13]
and automated [14] object recognition.

Much of the aforementioned GP vision research use pixel-
based classifiers. These classifiers involve GP expressions that
examine features of a subject image centred around a pixel of
interest, and determine a classification result for that pixel. To
process an entire image, the GP tree is executed consecutively
on all the pixels in an image. Although this has the potential of
very precise pixel-level classification, it can be computationally
expensive — and especially so for large GP expressions and
high resolution images.

Song et al.’s work in GP vision uses a different approach
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— block (or region) classification [2][3][5][6]. In [2][3], the
GP tree can access features of a (say) 32x32 square pixel
region of an image. After one single execution of the classifier
expression, a classification is made for that entire region of
the image. After applying multiple classification decisions to
different blocks of pixels in the image, an overall decision is
ascertained for the whole image, in terms of a percentage of
belief for the entire image. Using this technique, very good
results were reported in [2][3]. Later work in [5][6] applied
multiple classifier expressions to an image, and used a “voting
strategy” to determine which classifiers identified each pixel
most strongly during classifier expression applications. This
permitted classification to be determined on a pixel basis.
In all the above work, block classifiers are quite efficient to
process, in that the classification expressions are composed of
basic arithmetic operators — much more basic than expressions
typically found in pixel-based languages.

The motivation of this paper is to more closely examine
the effect of GP-based feature extraction languages on visual
pattern recognition. In particular, we compare performance of
block- and pixel-based classifiers on a different pattern recog-
nition problems. We primarily consider Brodatz textures[15]
as used in [2][3][5][6]. Brodatz textures are photographs of
various natural and artificial patterns, for example, textile,
stones, plant shapes, and others. We also consider a few
satellite and camera images, in order to see how well the GP
languages apply to alternative classes of images.

Although it is clear that block classifier languages are
more computationally efficient than pixel languages, here we
are primarily interested in comparing performance accuracy
between the different pattern classification languages. Our
curiosity is motivated by the fact that the block languages used
in [2][3][5][6] are very simple compared to typical pixel-based
languages found in the literature. These block languages use
rudimentary mathematical operators, while pixel languages use
a variety of statistical and image processing functions. We are
motivated to see whether the higher-level operators in pixel
languages contribute to more effective image classification.

The paper is organized as follows. The pattern classification
problems to be examined are introduced in Section II. Four
classification languages are defined in Section III, and other
experimental details are given in Section IV. Results of our
experiments are presented in Section V, and further discussed
in Section VI. Section VII summarizes the paper, and discusses
directions for future research.



Fig. 1. Brodatz textures. Full image is 512x512 pixels, and each texture area
is 128 x128. Numbers indicate which textures are used for positive training
cases.

Fig. 2. Aerial image of boats. (1692x 843 pixels.)

II. PATTERN CLASSIFICATION PROBLEMS

The main vision problem of concern is the recognition of
textures taken from the Brodatz texture data set'[15], which
were used previously in in [2][3][5][6]. Figure 1 shows the
textures we have used. The 5 numbered textures are used
separately as positive examples. For example, when texture
1 is a positive example, the remaining 15 textures are used as
negative cases. The textures were selected to introduce various
levels of difficulty. Some textures, such as 1 and 5, have very
similar patterns while other textures, such as 3, are easily
distinguished from others.

We also examine two other images, to give insights of
the pattern recognition languages on other kinds of vision
problems. We examine an aerial image of boats near a port
obtained from the satellite view of Google Maps® (Figure 2).
Our goal is to detect boats in the image. We also use a photo
of a group of people (Figure 3), in which we want to identify

Ihttp://www.ux.uis.no/~tranden/brodatz.html
Zhttp://maps.google.com/

Fig. 3.

Group photo. (1280x720 pixels.)

human faces from the rest of the image. Ground truth images
(see Fig. 5(a) and Fig 6(a)) were manually made to indicate
the areas of the images with boats and faces — in other words,
image areas to be considered as “positive” or true.

III. CLASSIFICATION LANGUAGES

A goal of this paper is to compare two different approaches
to GP-evolved pattern classifiers — pixel classifiers and block
(or region) classifiers. A pixel classifier makes a classification
decision for a single pixel of interest, normally by examining
spatial information in the surrounding image region of that
pixel. A block classifier makes a decision for all the pixels
within a region, based on information in that region. Pixel-
based classifiers are more common in the GP literature (see
Section I), while block-based classifiers are used by Song et
al. [21(3][5][6].

In the following, we will describe both of these method-
ologies in detail. Since they are highly dependent upon the GP
language used to define the classifier, the four GP languages
studied (one block language, and three pixel languages) are
also described.

A. Block classifier language

A block classifier language was presented by Song et
al. [2][3], and has been used in other vision applications
[5]1[6]. We implemented a block language resembling Song
et al.’s original language. To perform block classification,
multiple images are provided to the system: a target image
for positive classification, the target for negative classification,
and positive and negative test images. Training instances are
created by randomly sampling 400 sub-image blocks each from
the positive and negative target images. Our blocks are of
size 32x 32 pixels. The blocks contain various grey-scale (and
possibly colour) information about the positive and negative
target images, and comprise a feature vector for the GP
system. Using the feature vector, an evolved GP tree composed
of various mathematical and decision making functions can
extract classification information from each block. This results
in a binary classifier which, when applied to an image region,
makes a classification decision for that entire region. The
goal for evolution is to evolve a classifier that correctly
classifies positive and negative image instances, according to
the classification results for blocks in the image.

The block classification language is given in Table I, and
uses functions and terminals standard in the literature. Att[x]
represents the z'" pixel in the block (modulo total pixels in
the block), and returns the RGB or grey-scale value. Strongly



TABLE 1. BLOCK CLASSIFICATION LANGUAGE. (D=DOUBLE,
B=BOOLEAN)
Return Argument
Name type type Description
Add D D addition
Sub D D subtraction
Mul D D multiplication
Div D D protected division
If D B,D,D if a true then b else ¢
> B D, D true if a > b
< B D,D true if a < b
Between B D,D,D true if b < a < ¢
Random D - random constant, -1 < ¢ < 1
Att[x] D Value of attribute

typed GP is used for this and the other languages [16]. The
language shown has Boolean and double data types. The root
of each GP tree is double. Computed values greater than or
equal to zero are interpreted as true, while negative are false.

When a block classifier makes a decision about a 32x 32 re-
gion, all 1024 pixels in that region contribute to that classifica-
tion. This represents a large region of the image, and would be
too coarse for performing accurate pixel-based identification.
(Recall that Song er al. [2][3] determine an overall classifica-
tion for the whole image by inspecting multiple blocks of the
image.) Therefore, for the majority of the pixels in an image,
there are 1024 potential ways for assigning a classification to
each pixel, depending on the placement of the 32x32 block
overlaying that pixel. This poses some difficulty in comparing
block classifiers with pixel classifiers, since the odds are
good that there is at least a few block placements that give
contradictory classifications for any given pixel. Therefore, in
order to make a more meaningful comparison between block
and pixel classifiers, we use the following approach. During
testing, block classifiers are applied to images by placing the
block area over every possible 32x32 region of an image
(edges are not crossed, and so pixels close to edges have fewer
block overlays). We then tally the number of times each pixel
was identified as “true” within a tested block, scaled by the
number of times that pixel was processed in total. This results
in a percentage value that each pixel was classified as true.
Should a pixel be classified as true the majority of time (i.e.
threshold of 50%), then it is considered to be true with respect
to performance measurements.

B. Pixel classifier languages

TABLE II. PIXEL LANGUAGE PART 1. (I=INTEGER, D=DOUBLE)
Return Argument
Name type type Description
Add /D /D addition
Sub /D /D subtraction
Mul /D /D multiplication
Div /D /D protected division
Neg D D negation
Exp D D e raised to the operand
IfGT D D.D,D.D if @ > b then c else d
Max D D.D maximum
Min D D,D minimum
Sin D D sine
Cos D D cosine

Pixel-based classification works as follows. For a given
data set, two images are provided to the GP system — an
image to process, and a ground truth image. The ground truth
image is marked to show the positive region(s) to be identified
in the image. Using the ground truth, the system randomly

samples 512 positive pixels and 1024 negative pixels from the
input image. These centre pixels are then used for creating
training instances. Using the coordinates of the centre pixels,
a block of nxn pixels is formed around these pixels in a way
that the centre pixels coincides with the coordinates (|n/2],
|n/2]). We refer to these blocks as grids. For each pixel in the
grid, spatial filter values (average and standard deviation) are
calculated and stored for later access by GP expressions. To
speed up processing, we compute these values using NVIDIA
CUDA [17].

TABLE IV. SUMMARY OF THE LANGUAGE VARIATIONS
Spatial Block
Name operations | Offsets | processing
Complete X X
No Offset X
Raw Features X
Block Processing X X

During training, a binary classifier is evolved using positive
and negative training instances. The raw pixel values, as well
as the spatial filter values, form the feature matrix for the
system. GP uses this matrix in conjunction with mathematical
and decision making functions to evolve a classifier. Integer
offsets can be used to extract features in the vicinity of the
centre pixel. The decision made by the classifier is applied to
the centre pixel. During testing, the classifier processes every
pixel of the image. This contrasts to the block classifier, which
assigns the classification to all the pixels in the region.

We define 3 pixel classification languages, which will use
functions and terminals selected from Tables II and III. The
languages use 3 data types: double, integer, and channel.
Terminals (see Table IIT) include ephemeral random constants
for integers and doubles, channel index, and random terminals
(every access generates a new random value). Pixel values
(RGB and/or grey-scale) are accessible, either directly for a
centre pixel, or for a specified integer offset within the 32x32
block. The channel argument c specifies the particular channel
(R, G, B, grey-scale) to retrieve. Grey-scale images have R,
G, and B removed. Spatial data (average, standard deviation)
can also be read for centre pixels and offsets near them,
again for the specified channel. The area values (15, 17, 19)
were determined by experimentation, as earlier attempts using
smaller areas were not beneficial. Table II shows the remaining
functions, which are standard in the literature. There are integer
and double versions of the basic arithmetic operators.

The four languages used for the experiments are summa-
rized in Table IV. Spatial operations refer to the average
and standard deviation functions, while offsets include the
colour and spatial operators that use (i,j) offsets. The first two
languages (Complete, No Offset) thus use spatial operators,
while the others do not. Raw Features is essentially the Block
Processing language with extended mathematical operators,
but to be used in a pixel-classification manner.

IV. EXPERIMENT SETUP
In all runs, the static range selection method [18] was
used. A GP expression is evaluated for a pixel (block), and
if the output is > 0, it is considered a positive classification.
This is compared to the ground truth image. The number of
true positives and true negatives are then used to calculate the



TABLE III.

PIXEL LANGUAGE PART 2. (I=SINTEGER, D=DOUBLE, C=CHANNEL)

Return Argument
Name type type Description
c C - channel index (0,1,2,3)
ERC D - ephemeral random constant in the range [0, 1]
Random I - random integer in the range [0, 31]
GridERC 1 - ephemeral random constant in the range [0, 31]
Input colour D C channel value of the selected pixel
Avgr=15,17,19 D C average of k X k area
Stdevig—15,17,19 D C standard deviation of k X k area
Input colour D CILI channel value c at (i,j) offset
GAvgr=15,17,19 D C LI average of k X k area of channel c, offset (i.j)
GStdeviy—15,17,19 D CILI standard deviation of k X k area of channel c, offset (i,j)

TABLE V. RUN PARAMETERS
Parameter Value
Population size 1024
Generation size 50
Crossover rate 90%
Mutation rate 10%
Selection method Tournament selection
Tournament size 4
Elites 2
Number of runs per experiment | 20
Pixel block size 32x32
Training size, pixel langs. 512 +, 1024 -
Training size, block langs. 400 +, 400 -

fitness value of the individual in question:

TP+ TN
TOTAL

where TP is the number of true positives, TN is true negatives,
and TOTAL is the total number of cases.

Table V summarizes the GP parameters used. Parameters
were established via preliminary trials. Although we do not
claim they are “optimal” in any sense, exploratory trial runs
found that these parameters were effective for the GP lan-
guages and image data used. For example, we found that most
runs tend to converge by generation 50. The size of positive
and negative training sets reported in the table were found to
be effective for the pixel and block languages. Even though
the block language uses fewer training examples than the pixel
languages, early trials showed that larger training sets tended
to degrade block language performance. The training set size
for the block languages is the same as in [2].

We use the Java-based ECJ genetic programming system
as our GP engine [19].

fitness = x 100 (1)

V. RESULTS

Table VI shows the final test results of the experiments.
The true positive and true negative scores are averaged over
20 runs, and do not include the training pixels. Performance
is the average of the true positive and negative scores. We use
this as a balanced measure of performance, because training is
heavily biased towards negative pixels (there are more negative
training examples than positive). Best is the performance score
of the single top performing classifier found in the set of 20
runs. We have marked in boldface the best overall performing
language within a statistical significance measure of 95% for
each image studied. Statistical significance is measured with
an unpaired t-test with unequal variance.

Although training scores are not reported here, the training
and testing scores for true positives/negatives are closely
matching in all experiments, and so over-training is unlikely
to be occurring.

TABLE VI. EXPERIMENT RESULTS. ALL SCORES ARE %. “TEST +/-"
SCORES ARE TESTING TRUE POSITIVE AND NEGATIVE, “PERFORMANCE”
IS AVERAGE OF TEST + AND -, AND “BEST” IS THE SINGLE CLASSIFIER
FROM THE 20 RUNS WITH THE TOP PERFORMANCE SCORE. ALL SCORES
ARE AVERAGED OVER 20 RUNS (EXCEPT FOR “BEST”). TOP PERFORMING
LANGUAGE SCORES (WITHIN STATISTICAL SIGNIFICANCE OF 95% VIA
T-TEST) ARE HIGHLIGHTED IN BOLD.

Language
Image Test Scores | Complete | No Offset | Raw Feat. | Block Proc.
test + 79.40 89.91 39.69 95.73
Texture | test - 93.67 93.73 83.75 35.33
performance 86.54 91.82 61.72 65.53
best 94.14 93.48 65.55 80.43
test + 75.55 58.20 25.76 97.40
Texture 2 test - 85.74 90.20 90.64 60.68
performance 80.65 74.20 58.20 79.04
best 89.77 82.64 62.18 84.12
test + 96.76 96.39 73.68 94.66
Texture 3 test - 97.68 97.64 87.78 98.05
~| performance 97.22 97.01 80.73 96.35
best 98.19 98.24 81.42 96.95
test + 27.33 67.51 241 94.23
Texture 4 test - 91.94 88.70 98.23 41.95
performance 59.64 78.11 50.32 68.09
best 83.94 86.05 51.62 69.17
test + 81.85 87.37 20.09 89.79
Texture 5 test - 86.32 89.41 90.28 57.14
performance 84.09 88.39 55.19 73.46
best 91.05 90.70 62.69 79.27
test + 94.53 94.74 77.25 95.89
Boats test - 96.21 96.45 93.35 67.11
performance 95.37 95.59 85.30 81.50
best 96.29 96.81 88.04 92.68
test + 90.94 95.28 87.90 94.97
Face test - 92.65 94.26 89.86 64.69
performance 91.79 94.77 88.88 79.83
best 95.66 96.93 90.25 92.49
Total wins 3 6 0 1

There is some variability apparent in performance for
different languages and images. For example, for Texture 1, the
Raw Features language is weaker at positive identification than
the other languages. The Block Processing language, however,
is weak in negative identification. Overall the spatial languages
do better on Texture 1, with the No Offset language being the
best performer.

Texture 4 was the most challenging image for the lan-
guages. The No Offset language was the best performer.
Surprisingly, most solutions from the Complete language were
weak, mostly due to poor positive recognition performance
(low true positive scores).

Summarizing the scores in Table VI, the No Offsets spatial
language was the overall top performing language, having the
best (statistically significant) average solution performance for
6 images. This is followed by the Complete spatial language
(3 images), and the Block Processing language (1 image).



(a) Texture 1 - Complete (b) Texture 1 - No Offset (c) Texture 1 - Raw Features
+ 94.7%, - 93.6%, tot 94.2% + 94.4%, - 92.7%, tot 93.5% + 51.6%, - 78.9%, tot 65.3%

5 SR 2
(f) Texture 2 - No Offset
+ 75.1%, - 90.3%, tot 82.7%

(g) Texture 2 - Raw Features (h) Texture 2 - Block Proc. (i) Texture 3 - Block Proc.
+ 41.2%, - 83.2%, tot 62.2% + 99.0%, - 70.8%, tot 84.9% + 98.4%, - 97.6%, tot 98.0%

Fig. 4. Texture output images. See Fig. 1 for indication of textures 1, 2 and 3 used as positive targets. Scores include training and testing pixels, and show
true positive, true negative, and entire image.



(b) No Offset: + 94.5%,

(c) Block Processing: + 97.4%, - 90.6%, tot 94.0

(d) Details: (left) No Offset, (right) Block Proc.

Fig. 5. Boat output images. Scores are true positive, true negative, and total
for entire image.

Together, the spatial languages (Complete, No Offset) are
the overall top performers, meaning that spatial operators are
useful for many images studied. Curiously, even though the
Complete language is a super-set of the No Offset language,
it was not as good a performer in many instances. This
contradicts conventional wisdom that GP evolution will select
the best language operators for a problem at hand. In our
experience, the more complex language was not refined by
evolution. This may be due to the larger language defining too
complex a search space. On the other hand, the Raw Features

(b) Block Processing: + 98.3%, - 87.7%, tot 93.0%

(c) Details: (left) No Offset, (right) Block Processing

Fig. 6. Face output images. Scores are true positive, true negative, and total
for entire image.

and Block Processing languages do not use spatial operators.
It is clear that the block processing strategy we used with the
Block Processor is advantageous for that language, as it is
the main technical difference between it and the Raw Features
language, which is the poorest performing language of the four
studied.
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population. Ideal performance (ground truth image) is 100%.

Figure 4 show some texture image results of the exper-
iments. Images (a-d) are the best solution image results for
Texture 1 recognition, and (e-h) for Texture 2. Green indicates
positive identification. Therefore, the high density of green in
the Texture 1 area (see Figure 1) that is apparent in images
(a-d) corresponds to the high true positive scores. Green in
other texture areas denotes false positives. Hence, one can
see where the Complete, No Offset, and Block Processing
languages were tricked by the texture in the bottom-left corner.
Similarly, the Raw Features language was fairly liberal in (c)
when identifying positive instances, resulting in a low overall
score of 65.6%.

Texture 2 is one of the more difficult textures to recognize.
The results in (e-h) show that it is usually recognized, but
more mistakes (false positives and negatives) arise in (e,f,g).
The Block Processing results in (h) have a high degree of false
positive. A good result of the Block Processing language on
Texture 3 is shown in (i).

Also note that inter-texture boundaries can be difficult
for some languages. This is because boundaries represent
complex mixes of different textures. The spatial operators are
free to overlay across these boundaries, which can complicate
recognition of positive regions. We consider boundary artifacts
to be acceptable noise.

Figure 5 show sample results for the aerial boat image.
The No Offset result in (b) is very close to the ground truth
(a), and has an 88.05% image score. False positive are mostly
found in the ground clutter on the right-side. For comparison,
a Block Processing result is shown in (c). The details in (d)
show the primary advantage of pixel-based classification over
block processing — the ability to do precise classification.

Figure 6 show some results with the group photo. The faces
are identified, but with quite a lot of false positive results on
arms and background. The block result shown is much worse.

Fitness performance graph for Texture 1 runs (average 20 runs). Average is measured for entire population, while best is the single best scorer in the

In hindsight, this is a challenging image to analyze, as the
faces are very difficult to ascertain without higher-level image
processing. Although the group photo’s results are worse than
the textures and boats, they are useful in that they highlight
some limitations of the languages when applied to difficult
images.

Figure 7 shows the fitness performance for the Texture 1
runs. The top 4 curves are for the spatial languages, which
show superior fitness to the non-spatial languages.

VI. DISCUSSION

Our results show that pixel-classification languages with
spatial operators are preferable to those without spatial oper-
ators, and to block-classification languages. As described in
Section III-A, our block processing strategy used to analyze
the results in Table VI is not the manner in which block
languages were originally used. In [2][3], an overall classifica-
tion score (percent) for an entire image would be determined
after applying multiple block classifications to it. However, by
using exhaustive block overlays and thresholding, we could
more accurately compare the block language performance with
pixel-based languages.

Examining research in [2][3][5][6], we note that the GP
expressions used for block processing were apparently not
applied in a random-sampled manner to images. Rather, fixed
coordinate positions for block overlays were used on training
images, which might make training less effective than if
random-sampled coordinates are used. Computational perfor-
mance in wall-clock speed is also advantaged by the ability to
classify large regions of images at once.

Our experience is that using a block classifier with ran-
dom sampling of images during training and testing is more
challenging for block classification. Since the simple block
language samples only a relatively sparse number of pixel
points in an image region, it is difficult to learn pattern



concepts for complex images when too sparse a set of training
points are used. Spatial languages overcome this due to their
ability to extract pertinent features over an image region, and
in our case, using average and standard deviation calculations
(which are akin to blur and edge filters). Furthermore, because
a pixel-based spatial language can error for one pixel rather
than an entire region, errors are far less costly.

VII. CONCLUSION

Our results show that spatial pixel classifiers were the best
performers for the problems we studied. The rich set of spatial
operators used means that they are capable of sophisticated
feature extraction. We found that the block classifier was com-
petitive with the pixel classifiers in a few images tested. Our
thresholding approach to block language processing showed
that the block classifier language studied has very respectable
capabilities, considering the simplicity and efficiency of the
language used. It should be noted that later research in [5][6]
applied block languages in a manner closer in spirit to our
approach.

There are many directions for future investigations. The
GP vision literature (see Section I) shows that much more
complex GP languages for pattern classification are possible.
The language definitions we used could be made considerably
more advanced, by considering sophisticated image process-
ing primitives. The degree to which complex languages are
required, however, depends upon the application. Song et al.’s
work shows that a very rudimentary language is capable of
texture recognition, and there is no reason to believe that all
problems require complex primitives. Future work should also
consider alternate kinds of vision applications. New problems
will undoubtedly require the use of appropriate pattern classi-
fication languages.

Another direction of research is the application of GP-
evolved classification languages towards image segmentation.
Our “window sweeping” of classifiers on the aerial boat
image produced interesting results, and especially so with the
block classifier language. We intend to explore this application
further, and are considering implementation with NVIDIA
CUDA to speed up processing [17].

Our motivation here is to study the effect of feature
extraction language within the problem domain of GP vision.
We did not consider other computer vision paradigms in this
research. There are many other computational approaches to
pattern recognition in the computer vision literature, for ex-
ample, computational intelligence techniques (neural networks,
clustering) and mainstream computer vision algorithms. Future
research should consider a detailed comparative study of GP
vision technology with other computer vision approaches in
the literature.
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