
A Rapid Prototyping Approach to Synthetic Data Generation
For Improved 2D Gesture Recognition

Eugene M. Taranta II

University of Central Florida
Orlando, FL 32816, USA

etaranta@gmail.com

Mehran Maghoumi

University of Central Florida
Orlando, FL 32816, USA

mehran@cs.ucf.edu

Corey Pittman

University of Central Florida
Orlando, FL 32816, USA
cpittman@knights.ucf.edu

Joseph J. LaViola Jr.

University of Central Florida
Orlando, FL 32816, USA

jjl@eecs.ucf.edu

ABSTRACT
Training gesture recognizers with synthetic data generated
from real gestures is a well known and powerful technique that
can significantly improve recognition accuracy. In this paper
we introduce a novel technique called gesture path stochas-
tic resampling (GPSR) that is computationally e�cient, has
minimal coding overhead, and yet despite its simplicity is able
to achieve higher accuracy than competitive, state-of-the-art
approaches. GPSR generates synthetic samples by lengthen-
ing and shortening gesture subpaths within a given sample
to produce realistic variations of the input via a process of
nonuniform resampling. As such, GPSR is an appropriate
rapid prototyping technique where ease of use, understand-
ability, and e�ciency are key. Further, through an extensive
evaluation, we show that accuracy significantly improves when
gesture recognizers are trained with GPSR synthetic samples.
In some cases, mean recognition errors are reduced by more
than 70%, and in most cases, GPSR outperforms two other
evaluated state-of-the-art methods.

ACM Classification Keywords
H.5.2 Information interfaces and presentation: User inter-
faces, input devices and strategies; I.5.5 Pattern recognition:
Implementation, interactive systems

Author Keywords
Synthetic gestures; stochastic resampling; rapid prototyping;
gesture recognition

INTRODUCTION
Iterative design is a crucial tool for HCI research in user inter-
faces (UI), and techniques that aid in the rapid development
and exploration of such interfaces are consequently of high

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
UIST 2016, October 16-19, 2016, Tokyo, Japan
© 2016 ACM. ISBN 978-1-4503-4189-9/16/10...$15.00
DOI: http://dx.doi.org/10.1145/2984511.2984525

Figure 1: Example synthetic gestures from $1-GDS [50], MMG [2],
EDS 1 [47], and EDS 2 [47]. The first column of each row is the
original sample from which the remaining synthetic gestures are
derived. All gestures are smoothed.

value. In this context, high quality, lightweight, easy to un-
derstand and fast to implement algorithms that address com-
mon UI demands are often preferred over alternative, possibly
more robust industrial strength solutions. One example lies
in gesture recognition. Though UI research often involves
gestural interfaces, in the past, researchers required advanced
knowledge of mathematics and machine learning techniques
to implement robust gesture recognition. Wobbrock et al. [50]
began to address this problem when they introduced the el-
egant, well received $1 recognizer, which in turn spawned
several similar recognizers [1, 2, 26, 45]. These so-called $-
family recognizers, as well as other related rapid prototyping

alternatives, e.g. [21, 22], rely on nearest neighbor template
matching of candidate gestures to stored templates, and indeed
accuracy improves with increased training samples. However,
as Li [26] discusses, a user is unlikely to provide more than
one or two samples per gesture under usual conditions, which
limits the potential performance of these recognizers.

Accuracy as a function of training set size is not only limited
to the aforementioned techniques, as it has been shown that
many other recognizers also benefit by having access to larger
datasets [6, 37, 48]. To overcome the limitations imposed by a
small training dataset, researchers have utilized synthetic data
generation (SDG) methods [12] in order to synthesize new
samples from those already available. While SDG has proven
to be useful, current techniques are unsuitable for rapid proto-
typing by the average developer as they are time consuming
to implement, require advanced knowledge to understand and
debug, or are too slow to use in realtime. The latter is espe-
cially important in UIs where users can define new gestures
on demand. We address these issues by introducing a novel
rapid prototyping appropriate SDG method called gesture path
stochastic resampling (GPSR) that is accessible to the same
audience as those targeted by such recognizers. Specifically,
our method utilizes nonuniform resampling of gesture paths
and subsequent normalization of the in-between point vectors
[22] to produce realistic synthetic samples (see Figure 1).

Although our method is deceptively simple, we show through
an extensive evaluation that GPSR improves the recognition
accuracy of several rapid prototyping recognizers and two
parametric recognizers. Further, we compare our approach to
two alternative SDG methods and find that GPSR outperforms
both in almost every instance.

RELATED WORK

Rapid Prototyping Gesture Recognition
One popular subset of rapid prototyping gesture recognizers
is the $-family [1, 2, 26, 45, 50]. The original $1 recognizer
was pioneered nearly a decade ago by Wobbrock et al. [50],
and due to its simplicity and intuitiveness, their recognizer
and its successors have enjoyed immense success. The impor-
tance of these recognizers stems from the fact that they enable
HCI researchers to focus on UI design rather than fret over
advanced machine learning concepts, or libraries and toolkits
that may not be available for their platform. At their core,
$-recognizers utilize 1-nearest neighbor pattern matching [11],
where training samples are stored as templates and a candidate
gesture is measured against each template. The gesture class
of the best matching template is then assigned to the candidate
gesture or alternatively, an N-best list can also be provided.

As demonstrated repeatedly in various $-family recognizer
evaluations, accuracy continues to improve as the number of
samples per gesture increases, and while writer-dependent
recognition is already fairly high, mixed-writer and writer-
independent gesture recognition can still be improved, which is
one of the primary objectives of our synthetic data generation
method. By writer-dependent, we mean that the recognizer
is trained and used by the same person, whereas with writer-
independent, the recognizer is used by writers that are di↵erent

from those who trained it. Mixed-writer falls in between:
training samples come non-uniformly from multiple writers
who use the recognizer along with those who may not have
contributed training samples.

Synthetic Data Generation
The paucity of correctly labeled training data is a common
problem in the field of pattern recognition [31]. Crowdsourc-
ing can help alleviate this issue, although with potentially high
cost. Another alternative is to synthesize new data from that
which is already available. This process of synthetic data
generation (SDG) has been used successfully in many fields,
including human pose recognition [39], digital forensics [16,
28], information retrieval [17, 36] and handwriting recogni-
tion of ancient texts [15], as well as in generating [4, 13] and
collecting [29] large data sets.

Early examples of SDG in gesture and handwriting recognition
include works by Ha and Bunke [18] and thereafter, a number
of researchers have also attacked this problem as reported in
Elanwar’s survey [12]. One key di↵erence in their approaches
relates to whether the data is digital ink or images of symbols.
Methods that work on ink can broadly be divided into two
categories: those that replicate feature distributions of the pop-
ulation (such as pen-lifts and velocity) and those that apply
perturbations to the given data. The former approach requires
at least a small set of data to begin with, which may not exist
and is why we take a perturbation approach. A third option,
however, involves the interactive design of procedurally gen-
erated gestures, such as that provided by Gesture Script [27],
though we require a general method that does not require user
intervention.

Concerning image based techniques, Helmers et al. [19] pro-
posed an approach to produce synthetic text in which isolated
samples of an individual’s handwriting are concatenated to-
gether to form synthetic handwritten text. Ha and Bunke [18]
along with Cano et al. [6] leveraged various image transforma-
tion operations (e.g., erode, dilate, etc.) to produce variations
of image samples of handwritten characters. Varga et al. [41,
42] used randomly generated geometrical transformations such
as scaling and shearing lines of handwritten text to produce
new synthetic lines. Such transformations have also been ap-
plied towards the creation of synthetic CAPTCHAs [40]. Lee
et al. [24] generated synthetic Korean characters using Beta
distribution curves while Varga et al. [43] used Bezier splines
to generate handwritten English text. Caramiaux et al. [8]
generated synthetic samples drawn from Viviani’s curve to
produce controlled data to evaluate their proposed adaptive
gesture recognizer. Dinges et al. [10] used active shape mod-
els which rely on the linear combination of the eigenvectors of
the covariance matrix built for each class of shapes to create
synthetic handwritten text.

Perturbation models such as Perlin noise [32] and the Sigma-
Lognormal [35] model have been proven to be strong con-
tenders for SDG. Since we will be using these methods in our
evaluations, a more in depth description of each follows.

Perlin Noise. Davila et al. [9] used Perlin noise maps [32],
a well-known technique in computer graphics for producing

natural looking synthetic textures, to generate synthetic math
symbols. Each Perlin map consists of a grid of points. The
number of points defines the resolution of the map. A gradient
direction is assigned to each point and random noise is gener-
ated based on the direction of the gradient. Synthetic samples
are created by coinciding the gesture’s stroke points on the
noise map and moving each stroke’s points along the grid’s
gradient direction. A discriminating factor of Perlin noise
compared to our proposed approach is that our method modi-
fies the gesture’s path whereas Perlin noise modifies individual
sample points.

Sigma-Lognormal Model. Although numerous models have
been proposed to describe human movement, the kinematic
theory of rapid human movement [34] and its associated
Sigma-Lognormal (⌃⇤) model [35] has been shown to have
superior performance in modeling human movement, and has
been successfully applied to a large range of applications [30].
The ⌃⇤ equations (including Equations 1 and 2) attempt to
model the complex interactions of a neuromuscular network
executing an action plan. That is, a stroke is described by a
set of overlapping primitives connecting a series of virtual
targets [25], where each primitive is described by a lognormal
equation. Formally, the velocity profile of a trajectory is given
by:

~v(t) =
NX

i=1

~vi(t) =
NX

i=1

Di

"
cos �i(t)
sin �i(t)

#
⇤(t; t0, µi,�

2
i), (1)

which is the vectorial summation of N primitives. Each primi-
tive is a four parameter lognormal function scaled by Di and
time shifted by ti, where µi represents a neuromuscular time
delay and �, the response time. The angular position of a
primitive is also given by:

�i(t) = ✓si +
✓ei � ✓si

2

2
66666641 + erf

0
BBBBB@

ln(ti � t0i) � µi

�i
p

2

1
CCCCCA

3
7777775 , (2)

where ✓si and ✓ei are starting and ending angles of the ith
primitive. A parameter extractor such as that described by
Martín-Albo et al. [30] is used to find the individual primi-
tives and their associated model parameters for a given stroke.
Perturbations to model parameters create realistic variations
in the trajectory and can be used to create synthetic gestures,
such as for whiteboard note generation [14]. Closer to our
interests, Leiva et al. [25] recently introduced the Gestures à
Go Go (G3) web service to provide synthetic samples from
real data using kinematic theory. They were also able to show
that $-family recognizers trained with only synthetically gen-
erated samples could perform as well as recognizers trained
with only human samples.

Similar to perturbations on ⌃⇤ model parameters that change
the velocity profile by modifying delay and response times,
we also think of GPSR as a way of changing the timing pro-
file of a stroke, so that gesture subpaths are lengthened and
shortened as a result of our resampling strategy. However,
our approach uses the input directly, without requiring the
overhead of model parameter extraction.

GESTURE PATH STOCHASTIC RESAMPLING
The design of our synthetic data generation method is mo-
tivated by several crucial objectives. Foremost, as a rapid
prototyping technique, the approach should be easily acces-
sible to the average developer: understood with little e↵ort
and without expert knowledge, and consequently be fast to
implement as well as easy to debug. Yet even with its reduced
complexity, improvements in recognition accuracy must re-
main competitive as compared to other state-of-the-art SDG
methods. For the sake of adoptability, the approach ought
to utilize only spatial coordinates given that timing and pres-
sure information may be unreliable or even unavailable, but
more importantly, artificial gestures should be synthesized
with minimal computational overhead. Further, synthetic ges-
tures should have a realistic appearance, not only for display
purposes, but because severely deformed synthetic samples
may lead to poor recognizer performance. Finally, the method
should fit orthogonally and be complementary to already avail-
able gesture recognition techniques so that existing machinery
might be leveraged without significant modification if desired.
In our view, gesture path stochastic resampling (GPSR) sat-
isfies these aforementioned criteria. We now describe GPSR,
for which the pseudocode listing can be found in Appendix
A1.

Similar in nature to the ⌃⇤ model [25], one may think of a
gesture as being described by a canonical velocity profile that
is based on an action plan defining the gesture’s shape. To
recreate the gesture, a writer must execute the plan with a
certain level of fidelity. Minor variability due to perturbations
in the velocity profile will yield recognizable, yet uniquely
di↵erent shapes, and so long as the writer’s variation is rea-
sonable, global characteristics of the shape will remain intact.
However, rather than extract complex model parameters from
a given sample and perturb the parameters post hoc, we can
simulate reasonable perturbations on the sample directly.

As a first step, we consider perturbations that result in the
lengthening or shortening of gesture subpaths. To simulate
such deviations from the action plan, consider resampling a
stroke to n points so that the path length is nonuniform between
points. Call any vector between two contiguous points along
the gesture path an in-between point direction vector [22].
Now normalize all in-between point vectors to unit length
and observe that for any two arbitrary vectors, the ratio of
their lengths are altered as a result of the transformation. This
approach is analogous to modifying the gesture path length
between each pair of contiguous points, which is illustrated
in Figure 3—some in-between point vectors will have been
shortened while others will have been lengthened. It is easy
to see that each nonuniform resampling and subsequent nor-
malization will lead to a di↵erent shape, and with repeated
application, a distribution of synthetic gestures can be gener-
ated from a single sample.

Formally, let ⇠1 = 0 and ⇠2, . . . , ⇠n be a random sample of size
n � 1 from a uniformU(1, 1 +

p
12 ⇤ �2) population. Define

1Further, an interactive demo of GPSR is available at
http://www.eecs.ucf.edu/isuelab/demo/

stochastic-resampling

(a) Original Sample
(b) Stochastically Resampled (c) Post Normalization

(d) Synthetic Samples Distribution

Figure 2: Illustration of the gesture path stochastic resampling process.

an ordered list of gesture path ratios using the random sample:

r =

0
BBBBBBB@ri =

Pi
j=1 ⇠ j
P
⇠

��������
i = 1 . . . n

1
CCCCCCCA , (3)

so that 0 = r1 < ri < ri+1 < rn = 1. Further, a stroke is defined
as an ordered list of 2D points p =

�
pi = (xi, yi) | i = 1 . . . n

�
,

L is the arc-length of the gesture path through all points from
p1 to pn, and L(pi) is the arc-length distance to point pi [46].
Similarly, we denote L�1(d) as the inverse arc-length function
that returns the point px at distance d along the gesture path.
Now define an ordered list of stochastic points using the ratios
as follows:

q =
⇣
qi = L�1 �

riL
� ��� i = 1 . . . n

⌘
. (4)

The in-between point vectors derived from the stochastic
points are v =

�
vi = (qi+1 � qi) | i = 1 . . . n � 1

�
, from which a

synthetic stroke is generated:

p0 =

p0i = p0i�1 +

vi�1

|| vi�1 ||

������ i = 2 . . . n
!
, (5)

where p01 = (0, 0). The synthetic stroke p0 can then be scaled,
translated, rotated, and smoothed as desired.

We chose to use a uniform random distribution after finding
inconsequential di↵erences between the uniform, normal, ex-
ponential, and beta distributions, which was contrary to the
poor performing log-normal distribution. The lower bound
of the uniform distribution was set to 1 only to avoid any
probability of drawing 0 and the upper bound is a function of
variance so that the spread of the distribution can optionally
be tuned.

Removals
Another type of variation occurs when a writer skips over
some detail of the action plan, such as when a gesture stroke
is not fully articulated or when a corner is cut. To simulate
this in a general way we introduce the removal count x that,
when specified, indicates how many points from the stochastic
stroke q are randomly removed before generating the synthetic
stroke p0. When removals are used, n should be adjusted to
account for this reduction. Therefore, from hereon and for
clarity, n refers to the length of the final synthetic stroke after

the removal of x points, and implicitly the length of ⇠, r, and
q become n + x.

Multistroke Support
So far, we have described how to create single stroke syn-
thetic gestures. With only a few modifications, gesture path
stochastic resampling can also work with multistroke gestures.
In a preprocessing step, first randomly permute the stroke
set and randomly reverse a subset of the these strokes before
combining them together into a single ordered list of points2

p. In addition to 2D coordinate data, each point also now
possesses an integer stroke ID. Stochastically resample p as
before, while also interpolating the stroke ID as one does
with 2D coordinates. Last, generate the synthetic sample, but
break apart the unistroke p0 by discarding “over the air" points
whose stroke IDs are between integer values. This results in a
synthetic multistroke gesture, and example results are shown
in the second four rows of Figure 1.

PARAMETER SELECTION
Gesture path stochastic resampling requires the selection of
three parameters: variance �2, removal count x, and resam-
pling count n. With respect to variance �2, we found in early
testing that this parameter had little influence on recognizer
accuracy—any variance setting was su�cient to achieve good
results. Therefore, we settled for �2 = 0.25 and held the
parameter constant for the remainder of our analysis. Re-
moval count x, on the other hand, had a noticeable impact
on synthetic gesture quality. At x = 2, recognition accuracy
results were indeed improved, but as x increased, gesture qual-
ity rapidly deteriorated. For this reason, we also decided to
hold the removal count constant at two, and focus on the one
parameter having the most significant impact on accuracy and
gesture quality, the resampling count n.

As illustrated in Figure 3, one can see that the selection of n
significantly impacts synthetic gesture generation. With a low
resolution such as with n = 16, the left curly brace [50] has
reasonable variation between samples, but most triangle-chain
[47] samples are unrecognizable. At n = 64 there is practically
no variation between left curly brace samples, though triangle-
chain samples are now improved and have a healthy variation.
Finally, at n = 256, there appears to be almost no variation
2This approach was inspired by $N’s [1] handling of multistroke
gestures.

Figure 3: E↵ect of n on gestures of di↵erent complexity – left curly brace [50] (top) and triangle chain [47] (bottom)

for either gesture. These observations motivate us to find a
function of n based on properties of the gesture that yield
reasonable results—a function that can analyze an individual
gesture sample and select an optimal resampling count n to
apply.

In order to decide on an optimal resampling strategy, we con-
sider the e↵ect of n on various geometric relative accuracy
measures3 [46]. Namely, we use these measures to analyze
how well a population of synthetic gesture samples matches a
population of human generated samples. To start, Vatavu et al.
[46] define the shape error (ShE) of a candidate gesture to be a
measure of deviation from the gesture class’s canonical form:

ShE(p) =
1
n

nX

i=1

kp�(i) � pik, (6)

where p is the canonical point series and �(i) is a permuter of
the candidate gesture points, which is used to find an optimal
alignment. Shape variability (ShV) measures the standard
deviation of the individual shape errors. Thereafter, bending
error (BE) is a measure of average deviation from the absolute
curvature of the gesture class’s canonical form:

BE(p) =
1
n

n�2X

i=1

����✓�(i) � ✓i
���� , (7)

where ✓i is the turning angle between in-between point vectors
i and i + 1. Bending variability (BV) again is the variance of
these individual errors.

Using a similar evaluation methodology to that described
shortly, we calculated all four relative accuracy measures for
n 2 {8, 16, 32, 64, 128}. We found that the ShE and ShV were
significantly correlated (r(549) = .91, p < .0001), as were
BE and BEV (r(549) = .80, p < .0001). Given this strong
correlation between the error and variance metrics, we decided
to focus on ShE and BE only. Specifically, we were interested
in the mean ShE and mean BE for a population of gesture
samples. To di↵erentiate between the real population and a
3In addition to geometric measures, Vatavu et al. [46] also define
a set of kinematic accuracy measures that we do not include in our
analysis given that GPSR does not attempt to synthesize time stamps.
For similar reasons, the articulation accuracy measures were also not
studied.

Name Ref Multistroke Gestures Participants

$1-GDS [50] No 16 10
EDS 1 [47] No 18 14
EDS 2 [47] No 20 11
LP Training [22] No 40 24
MMG [2] Yes 16 20

Table 1: Datasets used in evaluations.

synthetic population we refer to these means as the real ShE
(real BE) and syn ShE (syn BE), respectively. Further, the
mean ShE percentage error is given in Equation 8, where
each summand compares the syn and real ShE for one gesture,
which gives us an error term for that gesture. Thus the equa-
tion averages these errors together, and our goal is to minimize
this overall error:

ShE % Err =
100
G

GX

i=1

���real ShE � syn ShE
���

real ShE
, (8)

where G is the number of gestures under consideration, and
the mean BE percentage error is defined similarly.

To carry out our investigation, we utilized the five datasets
described in Table 1. All of these datasets have been widely
used in various studies except LP Training [22]; we included
this dataset only to help avoid overfitting given that it replicates
a number of gestures found in the other datasets.

For a given gesture, we first scaled and aligned4 all samples
within the population, after which we followed the procedure
described by Vatavu et al. [46] to select the average template.
That is, we uniformly resampled all samples to a fixed number
of points, calculated the mean of the population, and selected
the sample closest to the mean to serve as the canonical (cen-
troid) sample of the gesture class. However, because all strokes
were first aligned, we choose our permuter �(i) to be the iden-
tity permutation. With the canonical gesture in hand, we found

4Alignment was decided by finding the per sample stroke order per-
mutation and direction that minimized the non-GSS $1 [50] distance
across the population.

the optimal n that minimized the ShE percentage error5—for
each value of n tested, we generated 512 synthetic samples
from the centroid. With these samples, we then calculated the
syn ShE for the population. Note that ShE was prioritized at
this stage because the metric relies on point correspondences
which directly, and sometimes indirectly, relate to the distance
metric employed by various rapid prototyping gesture recog-
nizers. Further, we also assumed that improvements in ShE
error would lead to improvements in BE error.

Since our goal was to find a function of n based on proper-
ties of a given sample, we considered seven features derived
from summaries provided by Blagojevic et al. [5]: curvature,
absolute curvature, closedness, direction changes, two den-
sity variants, and stroke count. In addition to optimal n, we
also extracted these features from the centroid sample. Us-
ing techniques from [23], we found that the optimal n had
a logarithmic relationship with its predictors, which is why
we first transformed the response. Thereafter, using stepwise
linear regression, we identified those features that best ex-
plained the variability of the 110 gestures (see Table 1). In
the end, we identified two features that together achieved high
performance:

closedness = 1 � || pn � p1 ||
diag

, (9)

and,

density =
L

diag
, (10)

where diag is the gesture’s bounding box diagonal length.
Absolute curvature actually accounted for negligibly higher
variability over density, but since the feature may be unreliable
due to jitter or wobbling and because destiny is a simpler
approach, we favored a parsimonious solution.

Now with good features selected, we performed multiple lin-
ear regression to find an equation for optimal n. A significant
regression equation was found (R2 = .59, F(2, 109) = 75.62,
p < .0001). The intercept (p < .0001), density (p < .0007)
and closedness (p < .0001) parameters were significant, yield-
ing the following equation:

n = exp
�
1.67 + 0.29 density + 1.42 closedness

(11)

Further, the cross validated coe�cient of determination6 (Q2 =
.56) was approximately equal to R2 = .59, which is another
indication of a good fit. Residuals were also confirmed to be
statistically normal using a Shapiro-Wilks test (W = .99, p =
.37).

We consider R2 = .59 to be a good result because there is a
great deal of variability between datasets. For instance, some
selected di↵erences in real ShE are the heart gesture at .061
and .142; rectangle at .045 and .054; five point star at .099
and .135; and triangle at .056 and .081. These di↵erences are
likely related to how the datasets were collected, including
5We set n = 16 as a lower bound, since lower values can result in
poorly malformed gestures.
6Q2 = 1 � PRES S

TS S .

n Rec % Error ShE % Err BE % Err

Optimal 3.47 (3.81) 26.06 (21.24) 21.15 (15.23)
8 — 1137.72 (9538.78) 95.86 (85.58)

16 4.68 (5.05) 80.22 (67.82) 33.37 (37.34)
32 3.80 (3.98) 38.85 (25.14) 25.27 (17.28)
64 4.20 (4.18) 44.44 (24.04) 33.63 (14.18)

Table 2: Mean gesture recognition percentage error (and SD) over
all template matching recognizers for one and two training samples
per gesture, from which 64 gestures are synthesized per training
sample (see Evaluation) on $1-GDS [50], MMG [2], EDS 1 [47], and
EDS 2 [47], as well as the ShE and BE percentage errors. Note that
the optimal n value ranges from 16 to 69 depending on the gesture’s
centroid.

the device, instructions, and software used. By applying the
optimal n equation to each of the 110 gesture centroids from
Table 1, we find that the n values range from 16 to 69, and
have a mean of 31 (SD=13.1).

Evaluation of Optimal n
To understand if optimal n (Equation 11) is e↵ective at simu-
lating a realistic distribution, we calculated the relative metrics
over varying n 2 {8, 16, 32, 64} and optimal n. Results can
be found in Table 2. Overall, optimal n had the lowest ShE
percentage error (M = 26%, S D = 21%) and, as compared
to its runner up n = 32 (M = 39%, S D = 25%), the result
was statistically significant based on a Wilcoxon signed-ranks
test (p < .0001). Similarly, optimal n also had the lowest BE
percentage error (M = 21%, S D = 15%) that again, compared
to n = 32 (M = 25%, S D = 17%), was significant (p < .004).

Further, to ensure our approach did not degrade recognizer
performance (for instance, by reducing or over inflating pop-
ulation variance as compared to other static values of n), we
also evaluated recognition accuracy for each level. Optimal n
achieved the lowest mean error 3.47% (S D = 3.81) for one
and two training samples expanded into 64 synthetic gestures
per sample, using unistroke recognizers on unistroke datasets
and multistroke recognizers on MMG [1]. The second closest
was n = 32, having a mean error of 3.80% (S D = 3.98);
although, the di↵erence between levels was not significant
(F(3, 220) = .4093, n.s.).

As a result of this analysis, we determined that optimal n
(which is unique per sample) is able to synthesize a gesture
population more precisely than any static value of n. This is
highly desirable, because for unknown datasets, we need to
reduce the probability of generating unrealistic samples that
cross the decision boundary between gestures classes, since
malformed gestures have the potential to ruin recognizer per-
formance. On the other hand, we also do not want to restrict
synthetic data generation so much so that there is insu�cient
variation to be of any use to a gesture recognizer, and there-
fore optimal n is utilized to strike a balance between these
objectives. For this reason, optimal n was used throughout the
remainder of our evaluations.

0

2

4

6

8

10

P
e
rc

e
n

tD
g

e
 (

rr
R
r

(9
5

%
 C

I)

$1 Rn $1-GD6

%Dseline

Perlin 1Rise
ΣΛ

GP65

0

2

4

6

8

10

12
ProtrDctor on $1-GD6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
3enny 3incher on EDS1

1 2 3 4 5
HuPDn 6DPSlHs x64 6ynthHtic TrDining 6DPSlHs

0

5

10

15

20

25

30

35

40

3
H
rc

H
n

tD
g

H
 (

rr
R
r

(9
5

%
 C

I)

5uEinH Rn (D62

1 2 3 4 5
Human 6amSlHs x64 6ynthHtic Training 6amSlHs

0

2

4

6

8

10

12

14

16

18
$1 on 00G

1 2 3 4 5
HuPan 6aPSlHs x64 6ynthHtic Training 6aPSlHs

0

5

10

15

20

25
$3 on 00G

Figure 4: Accuracy results for various configurations. In each graph, the horizontal axis is the number of human samples per gesture used for
training, where S = 64 synthetic samples were created per real sample. Results were randomly selected so as not to highlight any one particular
recognizer and dataset. However, across the board, one will notice that mean recognition errors are significantly reduced using GPSR with
gestures being stochastically resampled to optimal n.

$ 1-GDS [50] EDS 1 [47] EDS 2 [47] MMG [1]

Pincher, S = 8 Pincher, S = 64 $1, S = 8 $1, S = 64 Pincher, S = 8 Pincher, S = 64 $P, S = 8 $P, S = 64

M% (SD) ±% M% (SD) ±% M% (SD) ±% M% (SD) ±% M% (SD) ±% M% (SD) ±% M% (SD) ±% M% (SD) ±%

None 8.59 (6.56) — 8.59 (6.56) — 2.16 (3.29) — 2.16 (3.29) — 2.13 (3.09) — 2.13 (3.09) — 17.4 (9.20) — 17.4 (9.20) —
GPSR 6.05 (5.61) 30 4.76 (5.08) 45 1.11 (2.39) 49 0.46 (1.60) 79 1.11 (2.33) 48 0.59 (1.64) 72 14.3 (8.21) 18 10.5 (7.54) 40
⌃⇤ 7.32 (5.98) 15 6.41 (5.71) 25 1.92 (3.21) 11 1.38 (2.78) 36 1.37 (2.56) 36 0.92 (2.10) 57 26.6 (9.96) -49 24.1 (9.59) -38
PN 7.34 (6.27) 15 6.89 (6.02) 20 1.67 (2.96) 22 1.31 (2.64) 39 1.58 (2.67) 26 1.24 (2.39) 42 15.0 (8.79) 09 15.1 (8.79) 14

Table 3: Recognizer percentage error rates (SD) and their associated percentage error rate reductions from baseline (without SDG) given one
real training sample per gesture (T = 1), comparing gesture path stochastic resampling (GPSR), ⌃⇤ and Perlin noise (PN) for S = 8 synthetic
samples per real gesture and S = 64 across four datasets. The gesture recognizer shown is the one that achieved the lowest error rate for the
given dataset and S . In all cases, GPSR achieves the best performance.

EVALUATION: RECOGNITION ACCURACY
Our evaluation strategy was similar to that used by Wobbrock
et al. [50]. One key di↵erence in our protocol is that instead
of performing writer-dependent testing, we use a mixed-writer
protocol. Given a particular dataset comprised of G gestures,
all samples from all participants are pooled together. Then
for each gesture class, T real samples are selected from the
pool and 1 remaining, independent sample is selected for
testing. If synthetic data generation is being used, S synthetic
samples per real sample are generated for training, which
means the recognizer is trained with G ⇤ T ⇤ S samples. Once
the recognizer is trained, each sample in the validation test set
is classified, which results in G recognition tests. Note that
the validation set comprised only real samples, not synthetic
samples. These G results are subsequently combined into a
single average error rate. This procedure is repeated 1000

times and the result from each iteration is further averaged
into a single overall recognition error rate.

In this evaluation, the levels of T are increased from 1 to 5,
and the levels of S are

�
8, 16, 32, 64

. We note that it may

seem biased to test a recognizer trained with T real samples
to a recognizer trained with T ⇤ S synthetic samples, but
it is important to note that in both cases, exactly the same
number of real samples are provided. The key di↵erence
is in what advantage SDG can provide with respect to the
recognition error rate. One reason why we train with more
synthetic samples is because there are a lot of redundancies
in the synthetic sample distribution, where some synthetic
samples provide no additional value, which is discussed further
in the limitations section.

All datasets appearing in Table 1 except LP Training were
utilized in our recognition accuracy tests, as these are familiar
datasets commonly appearing in the literature. We consider
the problem described in the previous section of finding an
optimal n function that produces realistic distributions to be
di↵erent from that of finding a suitable n that results in high
recognition accuracy. However, it is important to note that
since we leverage the same datasets, it is possible that optimal
n is overfit in these tests. Static values n = 16, 32, and 64 were
also evaluated and as before. We found that n = 32 achieves
the lowest average error rate of all static values of n, and their
is no statistical di↵erence between optimal n and n = 32. Thus,
we do not believe there was overfitting in this case. For this
reason, we report only optimal n in this section. Further, since
we are primarily concerned with recognition accuracy when
only one or two samples are given per gesture, we restrict our
formal analysis to T 2 [1, 2], and the remaining levels are
only used to show that the trends continue as T increases, as
is shown in Figure 4. As a last note, since error rates tend to
be skewed towards zero and violate ANOVA assumptions, we
used the Aligned Rank Transform (ART) method [49] to carry
out our analysis.

SDG Methods
In addition to running all recognizers without synthetic data
generation (the baseline), three SDG methods were evaluated:
GPSR, Perlin noise and ⌃⇤. GPSR was implemented as dis-
cussed where samples are stochastically resampled according
optimal n (Equation 11). We used the Perlin noise implemen-
tation developed for [9]. This implementation includes several
parameters that influence the shape of the generated synthetic
sample (such as map resolution, amount of noise, etc.). Suit-
able values for these parameters were established via personal
contact with the authors. Moreover, the authors expressed that
the noise map was further smoothed via Gaussian blur prior
to application, and these considerations are incorporated in
our implementation. It is worth mentioning Perlin noise map
generation is time consuming, which makes synthetic sample
generation slow as compared to GPSR or ⌃⇤ (post parameter
extraction). To reduce the time needed to run our experiments,
we precomputed 2048 Perlin noise maps and cached them to
disk prior to application. Although considerable speed im-
provements were observed, these cached maps required 64
MiB of storage space.

Our ⌃⇤ implementation is based on the recent parameter ex-
traction algorithms described by Martín-Albo et al. [30]. Since
parameter extraction can also be a time consuming process,
we first extracted the ⌃⇤ models for all samples in the afore-
mentioned datasets and used only su�ciently high quality
models in our evaluation. That is, per [25], we required that
the signal to noise ratio of a reconstructed model be 15dB or
greater; otherwise the sample was excluded. Since the success
of parameter extraction is dependent on signal quality, low
resolution strokes can lead to di�cult situations. One exam-
ple problematic scenario occurs with the MMG [1] dataset
where multiple points have the same timestamp, which causes
an incorrect velocity calculation. We addressed these issues
as much as possible, but it should be noted that our imple-
mentation is unlikely to be as robust as alternative propriety

implementations. This is why we consider our results to be a
reasonable lower bound on what is possible with the ⌃⇤ SDG
method.

Recognizers
Template Matching Recognizers

Since gesture path stochastic resampling is designed to be used
as a rapid prototyping technique, we expect $-family and other
related recognizers to be paired with our method. Therefore,
we decided to evaluate GPSR with six such recognizers: $1
[50], Protractor [26], $N [1], $N-protractor [2], $P [45], and
Penny Pincher [22]. An additional benefit is that a variety of
distance metrics are used throughout this suite of recognizers;
so although these methods are all template matching, a large
variety of techniques are represented.

Parametric Recognizers

Two parametric recognizers, Rubine’s linear classifier [38] and
naive Bayes were implemented and trained using the same
set of features. We found that the original set of 13 features
in [38] were inadequate for mixed-writer gesture recognition,
and some features were unusable, since GPSR does simulate
timestamps for example. To overcome these issues, we in-
cluded some of the most prominent features described in [5].
The final features we settled for were the cosine ([38]:1)7 and
the sine ([38]:2) of the initial angle, angle of the bounding
box’s diagonal ([38]:4), the distance between the endpoints
([38]:5), cosine ([38]:6) and the sine ([38]:7) of the angle be-
tween the first and the last point, aspect ([5]:7-2), total angle
traversed ([38]:9) as well as some convex hull related features
such as length:perimeter ratio ([5]:2-6), perimeter e�ciency
([5]:7-16) and perimeter:area ([5]:7-17) ratio.

Recognition Errors (Accuracy)
Figure 4 shows results for various recognizers on di↵erent
datasets. These results were selected so as not to highlight
any particular recognizer, dataset, or SDG method, though the
results are consistent across all tested scenarios. One exception
is naive Bayes (discussed below). Further, the reader may
notice that ⌃⇤ performance is below baseline performance on
the $P MMG dataset, but this result is compatible with those
reported in [25]. Table 3 gives detailed recognition error rates
for the best performing recognizer for each dataset given one
real training sample per gesture. GPSR in all cases achieves
the best performance. Minimally with 8 synthetic samples
per training sample loaded, GPSR reduces the error rate by
18% on MMG and 30% on $1-GDS, whereas with the other
two datasets, improvements approach 50%. At 64 synthetic
samples per gesture, $P on MMG sees a 40% improvement,
and $1 on EDS 1 enjoys a 79% reduction in the error rate. ⌃⇤
and Perlin noise also see improvements, but to lesser extent
as can be seen in the table. Since we ran a vast number of
tests, in what follows, we discuss average results across all
recognizers and datasets. However, the full set of results can
be found on our website.

Template Matching Gesture Recognizers

7This notation signifies the feature number as presented in the paper
referenced.

Unistroke Gestures. Compared to the baseline percentage error
(M = 5.49, S D = 4.03), without SDG, all methods showed
an improvement in accuracy. GPSR achieved the lowest error
(M = 3.10, S D = 3.04), which was followed by ⌃⇤ (M =
4.33, S D = 3.72) and Perlin Noise (M = 4.32, S D = 3.51).
These di↵erences were statistically significant (F(3, 464) =
8.05, p < .0001), and a post hoc analysis using Tukey’s HSD
indicated that GPSR is significantly di↵erent from all other
methods (p < .005), although baseline, ⌃⇤, and Perlin noise
were not significantly di↵erent from each other.

Multistroke Gestures. With the MMG [2] dataset, results were
similar. GPSR (M = 10.10, S D = 3.29) achieves the highest
performance, compared to baseline (M = 14.67, S D = 4.42),
which was followed by Perlin noise (M = 12.68, S D = 3.86),
and ⌃⇤ (M = 16.98, S D = 5.25). Again, these di↵erences
were significant (F(3, 74) = 11.25, p < .0001), and a post
hoc analysis showed that all SDG methods were significantly
di↵erent from the baseline (p < .0002). However, the SDG
methods were not significantly di↵erent from one another.
Further, GPSR was significantly di↵erent from the baseline
(p < .04), although Perlin noise and ⌃⇤ were not significantly
di↵erent from the baseline.

Parametric Gesture Recognizers

Both parametric recognizers were substantially improved by
all SDG methods. The best performing method was Perlin
noise (M = 13.27, S D = 6.52), which was very closely
followed by GPSR (M = 13.75, S D = 6.10). ⌃⇤ (M =
15.57, S D = 7.01) was also well below the baseline (M =
32.96, S D = 9.47). These results were statistically significant
(F(3, 152) = 10.998, p < .0001), and again only GPSR was
significantly di↵erent from the baseline (p < .0001).

Upon further inspection, we found that with Rubine, GPSR
achieved the lowest mean error (M = 11.46, S D = 5.18),
which was followed by Perlin Noise (M = 13.42, S D = 5.85).
Conversely, with naive Bayes, Perlin noise achieved the lowest
mean error (M = 13.12, S D = 7.25), followed by GPSR
(M = 16.04, SD=6.18). Naive Bayes appears to be the only
case where Perlin noise achieved a better result than GPSR.

EVALUATION: RUNTIME PERFORMANCE
To determine the average time required to generate one syn-
thetic sample, we ran additional tests specifically to mea-
sure synthetic gesture generation speed with $1-GDS and
MMG data sets. The performance of Perlin noise was evalu-
ated both with and without using cached maps. The tests were
performed on a Surface Pro™ 3 featuring a low-power dual
core Intel Core-i7 mobile processor running at 2.30 GHz and
8 GiB of RAM. Table 4 summarizes the results.

According to table 4, the only method that is marginally faster
than GPSR is cached Perlin noise. However, this superiority
comes at the cost of additional storage needs. As mentioned
before, caching 2048 Perlin noise maps requires 64 MiB of
storage which may constrain its use on devices where available
memory for applications is limited to a few hundred megabytes.
Without caching, Perlin noise was the slowest method tested.
Further, it is evident that all methods performed slightly worse

$ 1-GDS MMG

M (µs) SD M (µs) SD

GPSR 6.75 0.43 8.34 0.45
⌃⇤ 125.46 14.96 129.32 12.09
Perlin 1101.16 79.43 1091.89 30.31
Perlin† 6.82 0.49 7.38 0.64

Table 4: Average time required to generate one synthetic sample by
each SDG method. All values are reported in microseconds and are
averaged over 256000 trials. Perlin† set is performed using cached
Perlin maps, and the ⌃⇤ time does not include parameter extraction,
which can take several seconds.

on generating synthetic multistroke samples which coincides
with expectations.

DISCUSSION
In all objectives set forth, gesture path stochastic resampling
succeeds. Foremost, we believe the technique is rapid proto-
typing appropriate. For example, GPSR is a straightforward
generalization of uniform resampling, i.e., with �2 = 0, x = 0,
and the multistroke extension utilizes concepts from $N [1]
and $P [45] without being more complex than either. Despite
GPSR’s reduced complexity, as compared to other state-of-the-
art SDG methods, we see from the evaluation that our method
is very competitive, for example, achieving a 79% error rate re-
duction for EDS 1 [47]. Indeed the accuracy of all recognizers
are improved and, in most cases, GPSR is the best performing
method. With respect to synthetic gesture realism, using opti-
mal n, GPSR achieves a low ShE and BE percentage error for
populations of synthetic gestures generated around centroid
samples. Finally, in terms of computational complexity, we
see that if noise maps are precomputed, then cached Perlin
noise is slightly faster than GPSR; otherwise, GPSR is able to
synthesize samples much faster than the other methods, and
so our approach can be used in realtime to generate potentially
hundreds of synthetic samples.

We see that as the number of real training samples increases,
GPSR continues to show significant improvements in the error
rates, though we can also observe that accuracy is converging
between recognizers trained with and without synthetic data,
see Figure 4. The biggest di↵erence in performance occurs
when only one or two real samples are available, which is our
primary research goal and is especially important for gesture
customization such as for gesture shortcuts [3]. As Appert
and Zhai remark: “Users tend to be reluctant to invest time
and e↵ort upfront to train or adjust software before using it."
This sentiment is echoed by Li [26] who notes that users are
unwilling to provide more than a small set of samples for
training. Consequently, methods that achieve more with less
are of high value in gesture recognition. Still, even in situations
where a user can provide numerous samples, the increase in
accuracy was substantial for all levels of real training samples
with the tested parametric recognizers. This result shows that
for custom gestures, even when many samples are provided,
synthetic data generation remains quite useful.

It is interesting to compare uniform and stochastic resampling
with respect to the resampling rate n. Vatavu [44] was able

to show that template matching recognizers employing a Eu-
clidean or angular distance metric are able to achieve high
recognition rates with as little as n = 6. High accuracy is
possible because corresponding points along the gesture path
of two samples from the same class are equivalent (the dis-
tance between points in the feature space is small), which is
generally untrue for samples from di↵erent gesture classes.
With stochastic resampling, on the other hand, small values
of n dramatically shifts points along the gesture path, which
has potential to move points out of correspondence and this
helps to explain why, in part, GPSR is useful in generating new
variations. Unlike uniform resampling, however, we found
that GPSR depends on a unique n per gesture to achieve a
reasonable ShE. If realism is unimportant, static n = 32 is also
a good compromise where smaller values result in too much
variability and larger values do not provide enough.

Limitations
Although we strived to develop a general approach that works
well for most situations, there are still a number of limitations
one should bear in mind before choosing to use our method.
First, like many synthetic data generation methods, GPSR
does not synthesize timestamps, which is an important part
of some gesture recognition strategies, e.g., for features based
on velocity and duration [38] or stroke segmentation [20].
Timestamps from an original sample can be interpolated and
applied to synthetic samples, but this naïve approach may not
produce realistic results. An alternative approach may use
the findings of Cao and Zhai [7] in modeling gesture stroke
production times based on characteristics of a given gesture,
but we leave this for future work.

Another limitation of GPSR is that synthetic samples are
bound to the seed samples from which they are derived, and
so our method may not su�ciently capture form variability,
especially between writers. If there are valid alternative pro-
ductions of a gesture, such as skewed edges on a right square
bracket, GPSR will not generate these forms given that we
modify the subpath length between points, not the subpath
direction. Additional geometric transformations like shearing,
scaling, and bending, applied globally or to a subpath may help
overcome this issue, an approach that has been successfully
used to generate synthetic textlines [41].

Since synthetic samples do not deviate substantially from the
seeds, GPSR generates a number of samples that appear re-
dundant in the recognition space—the samples do not improve
recognition accuracy because of their similarity with the seed
and other synthetic samples. This limitation leads to two
issues: we need to generate a large distribution of synthetic
samples to achieve good coverage and these redundant samples
may cause overfitting in a parametric recognizer. Template
matching recognizers will be impacted by the distribution size
since recognition time increases linearly with the number of
templates. Penny Pincher [22] is designed specifically for
speed and large template counts, but practitioners may need to
be careful to balance the training set size with application and
domain specific requirements when using other recognizers.
As part of our future work, we intend to investigate how to
cull a synthetic sample distribution down to just a few good

samples. Pittman et al. [33] recently suggested to use random
mutation hill climb to aid in template selection for $-family
recognizers, and they were able to achieve high accuracy with
significantly fewer templates, but the process is o✏ine. We
prefer an online process in which samples can be discarded
immediately based on those samples already synthesized.

Also not addressed in this work is how to handle small strokes
in a multistroke gesture. For instance, the dot in an ‘i’ or ‘!’
may be discarded with a nonzero removal count x > 0; or if a
small stroke appears in the middle of a gesture, the resampling
algorithm may not produce any points within the associated
subpath8. However, until a more elegant solution is identified,
logic can be added to ensure small strokes are not skipped.

Future Work
Although we set out to design a rapid prototyping technique
to complement such gesture recognizers, we discovered that
GPSR is quiet capable; and so to better understand the limita-
tions of gesture path stochastic resampling and also to under-
stand if GPSR is appropriate for general use, further studies
utilizing additional recognizers and SDG methods are war-
ranted. Since we evaluated recognition accuracies in a mixed-
writer scenario, we also require additional testing for pure
writer-dependent and writer-independent scenarios. Our hope
is that our method can help further bridge the gap between
robust, high quality, commercial grade gesture recognition
and rapid prototyping recognizers. For instance, it is desirable
to evaluate the performance of our proposed approach when
used for training support vector machines or random forests.
Conversely, we also wish to evaluate if GPSR is suitable for
testing recognizers, rather than training only.

We also plan to study user perception on synthetic gestures.
A preliminary study in which participants rated the realism
of synthetic and real gestures revealed significances between
GPSR, ⌃⇤, and Perlin noise samples, but not between GPSR
and real samples. These results show promise that GPSR
may be an appropriate method for rendering synthetic gestures
that look real, but more work is needed to test and validate
these results. Finally, beyond 2D gestures, we found that
GPSR works reasonably well with signatures, sentences, and
illustrations, though refinement is certainly necessary. For
instance, we found that optimal n was unsuitable for such
complex structures and, for instance, sentences will often run
o↵ their baseline. Finally, we would also like to explore how
GPSR can be applied towards 3D gesture recognition.

CONCLUSION
In this paper we presented a novel technique for synthetic data
generation that significantly improves gesture recognition ac-
curacy. Through an extensive evaluation we demonstrated that
GPSR is highly competitive with current state-of-the-art SDG
techniques, achieving as much as a 70% reduction in recogni-
tion error rates. Using optimal n, GPSR is also able to generate
synthetic gesture distributions that approximate real distribu-
tions based on the ShE and BE relative accuracy measures.
Further, due to its minimalistic design and low computational
cost, GPSR is also applicable to rapid prototyping.
8This is also true for uniform resampling.

ACKNOWLEDGMENTS
This work is supported in part by NSF CAREER award IIS-
0845921. We also thank the other ISUE lab members at UCF
for their support as well as the anonymous reviewers for their
helpful feedback.

REFERENCES
1. Anthony, L., and Wobbrock, J. O. A lightweight multistroke

recognizer for user interface prototypes. In Proceedings of
Graphics Interface 2010, GI ’10, Canadian Information
Processing Society (Toronto, Ont., Canada, Canada, 2010),
245–252.

2. Anthony, L., and Wobbrock, J. O. $n-protractor: A fast and
accurate multistroke recognizer. In Proceedings of Graphics
Interface 2012, GI ’12, Canadian Information Processing
Society (Toronto, Ont., Canada, Canada, 2012), 117–120.

3. Appert, C., and Zhai, S. Using strokes as command shortcuts:
Cognitive benefits and toolkit support. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
CHI ’09, ACM (New York, NY, USA, 2009), 2289–2298.

4. Awal, A.-M., Mouchere, H., and Viard-Gaudin, C. Towards
handwritten mathematical expression recognition. In Document
Analysis and Recognition, 2009. ICDAR ’09. 10th International
Conference on (July 2009), 1046–1050.

5. Blagojevic, R., Chang, S. H.-H., and Plimmer, B. The power of
automatic feature selection: Rubine on steroids. In Proceedings
of the Seventh Sketch-Based Interfaces and Modeling
Symposium, SBIM ’10, Eurographics Association (Aire-la-Ville,
Switzerland, Switzerland, 2010), 79–86.

6. Cano, J., Perez-Cortes, J.-C., Arlandis, J., and Llobet, R.
Structural, Syntactic, and Statistical Pattern Recognition: Joint
IAPR International Workshops SSPR 2002 and SPR 2002
Windsor, Ontario, Canada, August 6–9, 2002 Proceedings.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002,
ch. Training Set Expansion in Handwritten Character
Recognition, 548–556.

7. Cao, X., and Zhai, S. Modeling human performance of pen
stroke gestures. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’07, ACM (New
York, NY, USA, 2007), 1495–1504.

8. Caramiaux, B., Montecchio, N., Tanaka, A., and Bevilacqua, F.
Adaptive gesture recognition with variation estimation for
interactive systems. ACM Trans. Interact. Intell. Syst. 4, 4 (Dec.
2014), 18:1–18:34.

9. Davila, K., Ludi, S., and Zanibbi, R. Using o↵-line features and
synthetic data for on-line handwritten math symbol recognition.
In Frontiers in Handwriting Recognition (ICFHR), 2014 14th
International Conference on, IEEE (2014), 323–328.

10. Dinges, L., Elzobi, M., Al-Hamadi, A., and Aghbari, Z. A.
Image Processing and Communications Challenges 3. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011, ch. Synthizing
Handwritten Arabic Text Using Active Shape Models, 401–408.

11. Duda, R. O., Hart, P. E., and Stork, D. G. Pattern Classification
(2nd Edition). Wiley-Interscience, 2001.

12. Elanwar, R. I. The state of the art in handwriting synthesis. In
2nd International Conference on New Paradigms in Electronics
& information Technology (peit’013), Luxor, Egypt (2013).

13. Farooq, F., Jose, D., and Govindaraju, V. Phrase-based
correction model for improving handwriting recognition
accuracies. Pattern Recogn. 42, 12 (Dec. 2009), 3271–3277.

14. Fischer, A., Plamondon, R., O’Reilly, C., and Savaria, Y.
Neuromuscular representation and synthetic generation of
handwritten whiteboard notes. In Frontiers in Handwriting
Recognition (ICFHR), 2014 14th International Conference on
(Sept 2014), 222–227.

15. Fischer, A., Visani, M., Kieu, V. C., and Suen, C. Y. Generation
of learning samples for historical handwriting recognition using
image degradation. In Proceedings of the 2Nd International
Workshop on Historical Document Imaging and Processing, HIP
’13, ACM (New York, NY, USA, 2013), 73–79.

16. Galbally, J., Fierrez, J., Martinez-Diaz, M., and Ortega-Garcia, J.
Synthetic generation of handwritten signatures based on spectral
analysis. In SPIE Defense, Security, and Sensing, International
Society for Optics and Photonics (2009), 730629–730629.

17. Gatos, B., Konidaris, T., Ntzios, K., Pratikakis, I., and
Perantonis, S. J. A segmentation-free approach for keyword
search in historical typewritten documents. In Proceedings of
the Eighth International Conference on Document Analysis and
Recognition, ICDAR ’05, IEEE Computer Society (Washington,
DC, USA, 2005), 54–58.

18. Ha, T. M., and Bunke, H. O↵-line, handwritten numeral
recognition by perturbation method. IEEE Transactions on
Pattern Analysis and Machine Intelligence 19, 5 (May 1997),
535–539.

19. Helmers, M., and Bunke, H. Generation and use of synthetic
training data in cursive handwriting recognition. In Pattern
Recognition and Image Analysis. Springer, 2003, 336–345.

20. Herold, J., and Stahovich, T. F. Speedseg: A technique for
segmenting pen strokes using pen speed. Computers & Graphics
35, 2 (2011), 250 – 264. Virtual Reality in BrazilVisual
Computing in Biology and MedicineSemantic 3D media and
contentCultural Heritage.

21. Herold, J., and Stahovich, T. F. The 1¢ recognizer: A fast,
accurate, and easy-to-implement handwritten gesture
recognition technique. In Proceedings of the International
Symposium on Sketch-Based Interfaces and Modeling, SBIM
’12, Eurographics Association (Aire-la-Ville, Switzerland,
Switzerland, 2012), 39–46.

22. II, E. M. T., Vargas, A. N., and Jr., J. J. L. Streamlined and
accurate gesture recognition with penny pincher. Computers &
Graphics 55 (2016), 130 – 142.

23. Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. Applied
linear statistical models, vol. 5. McGraw-Hill Irwin New York,
2005.

24. Lee, D.-H., and Cho, H.-G. A new synthesizing method for
handwriting korean scripts. International Journal of Pattern
Recognition and Artificial Intelligence 12, 01 (1998), 45–61.

25. Leiva, L. A., Martín-Albo, D., and Plamondon, R. Gestures À
go go: Authoring synthetic human-like stroke gestures using the
kinematic theory of rapid movements. ACM Trans. Intell. Syst.
Technol. 7, 2 (Nov. 2015), 15:1–15:29.

26. Li, Y. Protractor: A fast and accurate gesture recognizer. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’10, ACM (New York, NY, USA,
2010), 2169–2172.

27. Lü, H., Fogarty, J. A., and Li, Y. Gesture script: Recognizing
gestures and their structure using rendering scripts and
interactively trained parts. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’14,
ACM (New York, NY, USA, 2014), 1685–1694.

28. Lundin, E., Kvarnström, H., and Jonsson, E. A synthetic fraud
data generation methodology. In Proceedings of the 4th
International Conference on Information and Communications
Security, ICICS ’02, Springer-Verlag (London, UK, UK, 2002),
265–277.

29. MacLean, S., Tausky, D., Labahn, G., Lank, E., and Marzouk,
M. Tools for the e�cient generation of hand-drawn corpora
based on context-free grammars. In Proceedings of the 6th
Eurographics Symposium on Sketch-Based Interfaces and
Modeling, SBIM ’09, ACM (New York, NY, USA, 2009),
125–132.

30. Martín-Albo, D., Plamondon, R., and Vidal, E. Improving
sigma-lognormal parameter extraction. In Document Analysis
and Recognition (ICDAR), 2015 13th International Conference
on (Aug 2015), 286–290.

31. Navaratnam, R., Fitzgibbon, A. W., and Cipolla, R. The joint
manifold model for semi-supervised multi-valued regression. In
Computer Vision, 2007. ICCV 2007. IEEE 11th International
Conference on (Oct 2007), 1–8.

32. Perlin, K. An image synthesizer. In Proceedings of the 12th
Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’85, ACM (New York, NY, USA,
1985), 287–296.

33. Pittman, C., Taranta II, E. M., and LaViola, Jr., J. J. A $-family
friendly approach to prototype selection. In Proceedings of the
21st International Conference on Intelligent User Interfaces,
IUI ’16, ACM (New York, NY, USA, 2016), 370–374.

34. Plamondon, R. A kinematic theory of rapid human movements.
Biological cybernetics 72, 4 (1995), 295–307.

35. Plamondon, R., and Djioua, M. A multi-level representation
paradigm for handwriting stroke generation. Human movement
science 25, 4 (2006), 586–607.

36. Rodriguez-Serrano, J. A., and Perronnin, F. Synthesizing queries
for handwritten word image retrieval. Pattern Recognition 45, 9
(2012), 3270 – 3276. Best Papers of Iberian Conference on
Pattern Recognition and Image Analysis (IbPRIA’2011).

37. Rowley, H. A., Goyal, M., and Bennett, J. The e↵ect of large
training set sizes on online japanese kanji and english cursive
recognizers. In Frontiers in Handwriting Recognition, 2002.
Proceedings. Eighth International Workshop on (2002), 36–40.

38. Rubine, D. Specifying gestures by example. SIGGRAPH
Computer Graphics 25, 4 (July 1991), 329–337.

39. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M.,
Moore, R., Kipman, A., and Blake, A. Real-time human pose
recognition in parts from single depth images. In Proceedings of
the 2011 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’11, IEEE Computer Society (Washington,
DC, USA, 2011), 1297–1304.

40. Thomas, A. O., Rusu, A., and Govindaraju, V. Synthetic
handwritten captchas. Pattern Recogn. 42, 12 (Dec. 2009),
3365–3373.

41. Varga, T., and Bunke, H. Generation of synthetic training data
for an hmm-based handwriting recognition system. In Document
Analysis and Recognition, 2003. Proceedings. Seventh
International Conference on (Aug 2003), 618–622 vol.1.

42. Varga, T., and Bunke, H. O✏ine handwriting recognition using
synthetic training data produced by means of a geometrical
distortion model. International Journal of Pattern Recognition
and Artificial Intelligence 18, 07 (2004), 1285–1302.

43. Varga, T., Kilchhofer, D., and Bunke, H. Template-based
synthetic handwriting generation for the training of recognition
systems. In Proceedings of the 12th Conference of the
International Graphonomics Society (2005), 206–211.

44. Vatavu, R.-D. The e↵ect of sampling rate on the performance of
template-based gesture recognizers. In Proceedings of the 13th
International Conference on Multimodal Interfaces, ICMI ’11,
ACM (New York, NY, USA, 2011), 271–278.

45. Vatavu, R.-D., Anthony, L., and Wobbrock, J. O. Gestures as
point clouds: A $p recognizer for user interface prototypes. In
Proceedings of the 14th ACM International Conference on
Multimodal Interaction, ICMI ’12, ACM (New York, NY, USA,
2012), 273–280.

46. Vatavu, R.-D., Anthony, L., and Wobbrock, J. O. Relative
accuracy measures for stroke gestures. In Proceedings of the
15th ACM on International Conference on Multimodal
Interaction, ICMI ’13, ACM (New York, NY, USA, 2013),
279–286.

47. Vatavu, R.-D., Vogel, D., Casiez, G., and Grisoni, L. Estimating
the perceived di�culty of pen gestures. In Proceedings of the
13th IFIP TC 13 International Conference on Human-computer
Interaction - Volume Part II, INTERACT’11, Springer-Verlag
(Berlin, Heidelberg, 2011), 89–106.

48. Velek, O., and Nakagawa, M. Document Analysis Systems V: 5th
International Workshop, DAS 2002 Princeton, NJ, USA, August
19–21, 2002 Proceedings. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2002, ch. The Impact of Large Training Sets on the
Recognition Rate of O↵-line Japanese Kanji Character
Classifiers, 106–110.

49. Wobbrock, J. O., Findlater, L., Gergle, D., and Higgins, J. J. The
aligned rank transform for nonparametric factorial analyses
using only anova procedures. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’11,
ACM (New York, NY, USA, 2011), 143–146.

50. Wobbrock, J. O., Wilson, A. D., and Li, Y. Gestures without
libraries, toolkits or training: A $1 recognizer for user interface
prototypes. In Proceedings of the 20th Annual ACM Symposium
on User Interface Software and Technology, UIST ’07, ACM
(New York, NY, USA, 2007), 159–168.

APPENDIX A: PSEUDOCODE
In this appendix, we present the gesture path stochastic resampling
pseudocode. Note that Stochastic-Resample is adapted from Re-
sample in [50]. Use of optimal n is considered optional, and we
recommend using n = 32 otherwise.

Make-Synthetic-Sample (strokes)

/*** Creates a synthetic sample from the given sample. ***/

unistroke Make-Stochastic-Unistroke(strokes, true)
n Optimal-N(unistroke)
x 2
�2 0.25
unistroke Stochastic-Resample(unistroke, n, x, �2)
multistroke Make-Multistroke(unistroke)

return multistroke

Stochastic-Resample (points, n, x, �2)

/*** Generate n + x � 1 normalized intervals. ***/

n n + x
total 0

for i 0 to n � 2 do

intervalsi Rand-Float(min = 1,max = 1 +
p

12 + �2)
total total + intervalsi

for i 0 to n � 2 do

intervalsi intervalsi / total

/*** Perform resampling. ***/

pathDistance Path-Length(points)
cnt 0
I pathDistance ⇤ intervalscnt
D 0
v {points0}

foreach pi in points for i � 1 do

d Distance(pi, pi�1)
if D + d � I then

t Min(Max((I � D) / d, 0), 1)
prev pi�1
qx (1 � t) ⇤ prevx + t ⇤ pix
qy (1 � t) ⇤ prevy + t ⇤ piy
qstroke_id (1 � t) ⇤ prevstroke_id + t ⇤ pi, stroke_id
Append(v, q)
InsertAt(points, i, q)
D 0
cnt cnt+1
I pathDistance ⇤ intervalscnt

else

D D + d

/*** Remove random points. ***/

for i 1 to x do

idx Rand-Int(min = 0,max = n � i)
Remove(v, idx)

/*** Normalize vectors. ***/

normalizedPoints {Point(0,0, v0,stroke_id)}
for i 1 to |v| � 1 do

prev vi�1
dx vix � prevx
dy viy � prevy

len
p

dx2 + dy2

qx normalizedPointsi�1x + dx/len
qy normalizedPointsi�1y + dy/len
qstroke_id vi, stroke_id
Append(normalizedPoints, q);

return normalizedPoints

Distance (Point a, Point b)

return

q
(ax � bx)2 + (ay � by)2

Make-Stochastic-Unistroke (strokes, randomize)

/*** Permute strokes with Fisher-Yates shuffle, ***/

/*** and handle stroke direction invariance. ***/

strokeCount Length(strokes)
if randomize then

for i strokeCount � 1 downto 0 do

j Rand-Int(min = 0,max = i)
Swap(strokesi, strokes j)
if Rand-Float(min=0, max=1) < 0.5 then

Reverse(strokesi)

/*** Combine strokes into a unistroke. ***/

v = {}
for i 0 to strokeCount � 1 do

pointCount Length(strokei.points)
for j 0 to pointCount � 1 do

Append(v, strokesi.points j)

return v

Optimal-N (points)

/*** Computes the optimal stochastic resampling factor. ***/

endpointsDist Distance(points0, points|points|�1)
pathLength Path-Length(points)
diagonal Diagonal(points)

density pathLength / diagonal
closedness 1 � endpointsDist / diagonal

/*** Compute the optimal n, Equation 11 ***/

n exp(1.67 + 0.29 ⇤ density + 1.42 ⇤ closedness)

if n < 16 then

n 16
return n

Make-Multistroke (points)

/*** Converts a unistroke to a multistroke. ***/

multistroke {}, temp {}
id 0

foreach pi in points for i � 0 do

prev_id id
id pi.stroke_id

/*** The point belongs to a stroke part ***/

/*** if its id is an integer. ***/

if IsInteger(id) then

if temp , {} and prev_id , id then

Append(multistroke, temp)
temp {}

Append(temp,pi);

/*** Append any remaining points. ***/

if temp , {} then

Append(multistroke, temp);

return multistroke

Path-Length (Points points)

d 0
for i 1 to

���points
��� � 1 do

d d + Distance(pointsi�1, pointsi)
return d

Diagonal (Points points)

minPoint Point(Minx(points), Miny(points))
maxPoint Point(Maxx(points), Maxy(points))

return Distance(minPoint, maxPoint)

