
Code Park: A New 3D Code Visualization Tool

Pooya Khaloo∗, Mehran Maghoumi†, Eugene Taranta II‡, David Bettner§, Joseph Laviola Jr.¶
University Of Central Florida

Email: ∗pooya@cs.ucf.edu, †mehran@cs.ucf.edu, ‡etaranta@gmail.com, §dbettner@gmail.com, ¶jjl@cs.ucf.edu

Abstract—We introduce Code Park, a novel tool for visualizing
codebases in a 3D game-like environment. Code Park aims to
improve a programmer’s understanding of an existing codebase
in a manner that is both engaging and intuitive, appealing to
novice users such as students. It achieves these goals by laying
out the codebase in a 3D park-like environment. Each class in the
codebase is represented as a 3D room-like structure. Constituent
parts of the class (variable, member functions, etc.) are laid out
on the walls, resembling a syntax-aware “wallpaper”. The users
can interact with the codebase using an overview, and a first-
person viewer mode. We conducted two user studies to evaluate
Code Park’s usability and suitability for organizing an existing
project. Our results indicate that Code Park is easy to get familiar
with and significantly helps in code understanding compared to
a traditional IDE. Further, the users unanimously believed that
Code Park was a fun tool to work with.

I. INTRODUCTION

Code visualization techniques assist developers in gaining

insights into a codebase that may otherwise be difficult or

impossible to acquire via the use of a traditional text editor.

Over the years, various techniques have been proposed to

address different issues. For instance, SeeSoft [1] maps each

line of code to an auxiliary UI bar such that the color of the

bar represents a property of the code, e.g. red rows could
represent recently changed lines. Code Bubbles [2] organizes

source into interrelated editable fragments illustrated as bubbles

within the user interface, and CodeCity [3] uses a 3D city-like

structure to visualize the relative complexity of modules within

a codebase. However, among all of the techniques that have

been explored, little attention has been given to how source

code can be visualized in order to help developers become

familiar with and learn a new codebase.

The task of learning a new codebase is fraught with

many issues, three of which include memorization, cognitive

load, and engagement [4]–[6]. Imagine a new hire set to

study a proprietary project that is a complex hierarchical

conglomeration of thousands of source files. Indeed memorizing

the structure of such a system is a difficult chore, not to

mention mentally exhausting as well as potentially tedious and

likely boring. To address these issues, we introduce Code Park

(CP), a new 3D code visualization tool that aims to improve

a programmer’s understanding of an existing codebase in a

manner that is both engaging and fun. CP organizes source

code into a 3D scene in order to take advantage of human’s

spatial memory capabilities [7] and help one better understand

and remember the architecture. CP also supports two points

of view that are an exo-centric (bird’s eye) and ego-centric

(first-person) view, which allows one to examine the codebase

at different granularities (see Figure 1).

(a) Top-down view of the entire codebase. Each cube is a code
room.

(b) Exploring the inside of a code room in first-person vieweing
mode.

Fig. 1: Code Park in action. Each class is shown as a room.

The user can study the code in a first-person view mode.

Our design goals with CP are threefold. We aimed to create

a code visualization tool that helps users become familiar with

and memorizing an existing codebase. This tool must be easy to

work with and must show information in a form which reduces

the user’s cognitive load. Finally, the tool must be engaging

and enjoyable to work with. Specifically the following are the

contributions of our exploratory work:

1) Creating an engaging and intuitive tool for improved code

understanding.

2) Examining the usability of such a tool and gauging user

interest.

3) Displaying the source code itself in a 3D environment

(rather than a metaphorical representation) and facilitate

“intimate” interaction with the code via an ego-centric

mode.

To evaluate our design goals and the usability of the

2017 IEEE Working Conference on Software Visualization

978-1-5386-1003-9/17 $31.00 © 2017 IEEE

DOI 10.1109/VISSOFT.2017.10

43



system, we performed a user study. Our results indicate that

our participants found CP easy to use and helpful in code

understanding. Additionally, they unanimously believed that

CP was enjoyable. We ran a follow up user study to determine

how users would organize the classes of an existing project in

the 3D environment in a way that the arrangement helps them

remember the code structure better.

II. RELATED WORK

There is a body of work available in the literature on software

visualization [8]–[15]. We direct the reader to comprehensive

surveys of different methods available in the work of Teyseyre

and Campo [16] and also Caserta and Olivier [17]. For example

SeeSoft [1], one of the earliest visualization metaphors, allows

one to analyze up to 50,000 lines of code by mapping each

line of code into a thin row. Marcus et al. [18] added a new
dimension to SeeSoft to support an abstraction mechanism to

achieve better representation of higher dimensional data.

Recently, there have been more work focusing on 2D

visualization. Code Bubbles [2] suggested a collection of

editable fragments that represent functions in a class. Code

Gestalt [19] used tag overlay and thematic releations. Lanza

and Ducasse [20] proposed categorizing classes and their

internal objects into blocks called Blue Prints. Gutwenger et al.
[21] proposed an approach for improved aesthetic properties

of UML diagrams when visualizing hierarchical and non-

hierarchical relations. Balzer et al. [22] introduced hierarchy-
based visualization for software metrics using Voroni Treemaps.

Additionally, Holten [23] used both hierarchical and non-

hierarchical data to visualize adjacency relation in software.

The common observation among these efforts is that they are

all based on 2D environments and were mostly suitable for

expert users.

Benefit of 3D over 2D. Remembering code structure will

result in faster development so it is an essential part of being a

programmer. Specifically, 3D environments tap into the spatial

memory of the user and help with memorizing the position of

objects [7]. These objects could be classes or methods. There

are also studies which provide evidence that spatial aptitude is

a strong predictor of performance with computer-based user

interfaces. For instance, Cockburn and McKenzie [24] have

shown that 3D interfaces that leverage the human’s spatial

memory result in better performance even though some of their

subjects believed that 3D interfaces are less efficient. Robertson

et al. [25] have also shown that spatial memory does in fact
play a role in 3D virtual environments. A number of researchers

have attempted to solve the problem of understanding code

structure. Graham et al. [26] suggested a solar system metaphor,
in which each planet represented a Java class and the orbits

showed various inheritance levels. Balzer et al. [27] presented
the static structure and the relation of object-oriented programs

using 3D blocks in a 2D landscape model.

Among these, the city metaphor is one of the most popular

ideas. CodeCity [3] is an example of a city metaphor. CodeCity

focus on the visualization of large and complex codebases

using city structures where the number of methods in each

class represented the width of the buildings and the number

of attributes represented their height. Panas et al. [28] used
Vizz3D1 to visualize communication between stakeholders

and developers in the process of software implementation.

Alam and Dugerdil [29] introduced the Evospaces visualization

tool in which they represent files and classes with buildings

similar to CodeCity. Additionally, they showed the relations

between the classes using solid pipes. There are other works

that leverage such visualization metaphors such as [30] and

[31]. The common theme with these tools is that most of them

only showed the name of the classes in their environment

which is not instrumental for learning purposes and again, they

are mainly targeting experienced developers.

User engagement. The fun and engaging aspect of pro-

gramming tools, especially for teaching purposes, has gained

attention in recent years. Alice [32] is a 3D interactive

animation environment tool that aims to encourage student

engagement by creating a game-like environment. Resnik et
al. [33] introduced a novel development environment that
appeals to people who believe their skills are not on par

with experienced developers. They designed their tool in a

way that was fun and likable. They also made it suitable for

youth learners. There are also many studies that are focused

on creating fun and engaging tools and methods that help

newcomers enjoy learning programming [34]–[37].

What sets CP apart from current tools in the literature is that

it is designed to be suitable for both beginner and experienced

developers alike. Saito et al. [38] examined the learning effects
between a visual and a text-based environment on teaching

programming to beginners. Their results deemed the visual

environment as a more suitable option for teaching beginners.

Indeed, at the lines of code level, CP differs little from a

traditional IDE, other than code can be read from within a 3D

environment. Where CP diverges from a traditional IDE is in

how one interacts with a project: file hierarchies vs buildings

in 3-space. The exo-centric view in CP helps the user glean a

holistic understanding of the codebase without involving them

in unnecessary details. Conversely, the ego-centric view enables

a fine-grained understanding of the codebase. The addition of

the ego-centric view is the key distinction between the current

work and CodeCity [3].

III. USER INTERFACE DESIGN

When designing CP, we had three main goals in mind. We

wanted CP to greatly help with learning codebases, be easy to

learn and fun to use. With these goals in mind, we employed

an iterative design approach. We tested CP often and refined

it by incorporating peer feedback from experts in this area.

In CP each room represents one class in the codebase. This

approach is inspired by CodeCity [3]. The rooms are placed

on a ground filled with a grassy texture, which resembles a

park. The rooms are grouped together based on the code’s

project file structure: files inside the same directory result in

adjacent rooms and each group of rooms are labeled by the

1http://vizz3d.sourceforge.net/

44



(a) Bird’s view with tooltip on top-right. (b) Class method overview tooltip.

(c) Class method overview wallpaper. (d) Code reading view.

Fig. 2: Various CP view modes and features. In (a), the user has hovered the mouse over a class with a long name.

directory name (see Figure 2a). This was done in order to

avoid confusion for large codebases that had many files. The

size and the color of each room is proportional to the size of

the class they contain (larger classes appear as larger rooms

that have a darker color on their exteriors). Each room has

syntax-aware wallpapers that have a color theme matching

Microsoft Visual Studio (VS)’s dark theme (dark background

and gray text with colored language keywords, comments and

strings literals – see Figure 2d). The users can explore the

environment in the first-person mode because it is one of the

well known navigation methods in the 3D environment and also

resembles video games which helps making CP more engaging.

The users can click on the wallpaper with the cross-hair to

transition into the code viewing mode. This places the camera

orthogonal to the wallpaper, allowing the users to read the

code and scroll it (using the mouse wheel) similar to a text

editor.

One of our design goals was to allow CP to show as much

information as possible while maintaining the ease of use and

managing the user’s cognitive load. Consequently, we employed

the bird’s view navigation mode (see Figure 2a). In bird view

mode, the users have a top-down view of all the rooms placed

on the ground. This way, the users can first get some insight

about the structure of the codebase and the number of classes

and then study the codebase in more detail via the first-person

mode. In bird’s view, the name of each class is etched on the

roof of each room. This immediately helps the users know

which class they are looking at. In this view, hovering the

cursor over each room shows a tool-tip text showing the name

of the class in a larger font as shown in Figure 2a. The users

can transition to the first-person view by clicking one of the

code rooms and can go back to bird’s view by pressing a

keyboard shortcut. The camera’s transition to and from bird’s

view is animated in order to preserve the user’s sense of spatial

awareness.

We improved bird’s view mode further by adding syntax

parsing features so as to be able to provide class-level details

(such as the list of all member functions) to the user. In bird’s

view, right-clicking on a room shows a tool-tip balloon that

provides a list of the methods defined in the class corresponding

to the room (see Figure 2b). This allows the users to quickly

glean useful information about each class. This overview is

also available on one of the wallpapers inside each room as

shown in Figure 2c.

By supporting syntax parsing, we implemented a commonly

used feature in most IDEs, namely go-to definition. This feature
allows the programmers to quickly jump to the location inside

a file where a user-defined type or a variable is defined for the

first time. It aids the users in learning the codebase by allowing

them to both mentally and visually connect the disparate parts

of the code together.

In CP, the users can click on a variable, function or a user-

defined type with their cross-hair and jump to the location

where the clicked item is defined for the first time. The jump

from a room to another room is done using two consecutive

animated camera transitions: from the current room to bird’s

45



view and from bird’s view to the room containing the definition2.

After the transition is finished, the definition of interest is

signified by a blinking highlight to focus the user’s attention

and also to indicate the completion of the task. In addition to

being visually appealing, these transitions maintain the users

awareness of the 3D environment. It is worth mentioning that

all movements and navigation actions in CP are done with

animations instead of jumping around which helps preserve

the spatial awareness of users. This way they can memorize

location of each part of codebase such as classes or even

methods and variables more efficiently.

IV. EVALUATION: CODEPARK USABILITY

We conducted a usability study to evaluate the following

hypotheses:

H1: A project organized in a 3-space, city-like environment
will be easier to learn.

H2: A project organized in a game-like environment will be
more engaging.

H3: The move to 3-space will not make working with source
more difficult.

At the time of this writing, CP only supports C# projects.

Therefore, we decided to compare CP with one of the most

prominently used IDEs for C#, namely Microsoft Visual Studio

(VS). Given a few programming-related tasks, we are interested

in studying the effects that using CP has and also determine

how CP helps with code understanding.

Participants and Equipment. We recruited 28 participants
from University of Central Florida (22 males and 6 females

ranging in age from 18 to 31 with a mean age of 22.8). Our

requirements for participants were that they should be familiar

with the C# language and also have prior experience with VS.

All participants were compensated with $10 for their efforts.

Each participant was given a pre-questionnaire containing some

demographic questions as well as some questions asking about

their experience in developing C# applications. After that, a

short C# skill test was administered to validate their responses

in the pre-questionnaire. The skill test contained five multiple-

choice questions with varying difficulties selected from a pool

of coding interview questions3.
After the skill test, each participant was given a set of tasks

to perform using each tool (VS or CP) and filled out post-

questionnaires detailing their experience with each tool. Prior

to performing the tasks on a specific tool, the participants

were given a quick tutorial of both tools and were given a few

minutes to warm up with the tool.
At the end of the study, the participants were asked to fill

out a post-study questionnaire to share their overall experience.

The duration of the user study ranged from 60 minutes to 90

minutes depending on how fast each participants progressed

towards their assigned tasks.
Our setup consisted of a 50-inch Sony Bravia TV used

as the computer screen. The users used Visual Studio 2013

2Unless the definition is inside the same room in which case the camera is
transitioned to the definition directly.
3https://www.interviewmocha.com/tests/c-sharp-coding-test-basic

Community Edition and Unity3D v5.4.0 on a machine running

Microsoft® Windows 10 64-bit equipped with 16.0 GB of RAM,

Intel® CoreTM i7-4790 processor with 4 cores running at 3.60

GHz and NVIDIA GeForce GTX 970 graphics processor.

Experiment Design and Procedure. When comparing VS

with CP, there are a few considerations involved in order

to design a sound experiment that allows a fair comparison

between the two tools. First, VS has been in development for

many years and most C# developers work with VS frequently.

As a result, it could be the case that the users who use VS

frequently are biased towards VS, because they have had

more time to work and get comfortable with it. Consequently,

devising a fair between-subject design would be difficult.

Second, focusing on a purely within-subject design presents

other complications. It is important to avoid any unwanted

learning effects in a within-subject design when the user is

working with both tools. Given a particular codebase and a

set of tasks, if a user performs those tasks in VS and then

switches to CP to perform the same set of tasks, chances

are that those tasks are performed much faster the second

time. This is because the user will have learned the codebase’s

structure the first time and can leverage that knowledge in CP.

To avoid this learning effect, the user should be given two

different codebases to work with. However, care must be taken

when selecting the two codebases, as they should be relatively

similar in structure and the degree of difficulty.

Having two codebases may pose another problem. Even if

the two codebases are specifically chosen to be similar, minor

differences between the two could affect the results. Moreover,

studying and learning someone else’s code can quickly become

tedious and the users can become fatigued after using the first

tool, affecting their performance in the second tool. Therefore,

it is imperative to mitigate any of these unwanted effects in

the study.

Facing with all these considerations, we opted to use a

mixed-effects design for our study to benefit from both of

the design modes. In our experiments, each participant used

two different codebases with both tools. Several codebases

were considered at first and after a few pilot runs and

getting feedback from peers, two codebases were carefully

selected. These selected codebases shared similar structures

and properties. One codebase is a console-based library catalog

system called Library Manager (LM). The other codebase is a

console-based card matching game called Memory Game (MG).

Table I summarizes these codebases. Note that even though

MG contains more lines of code, some of its largest classes

contain mostly duplicate code that handle drawing the shape

of each playing card on the console window. Our assumption

with the choice of codebases is that the two codebases are not

significantly different and would not bias our results4.

To avoid the unwanted effects discussed previously, we

permute the order of tools and codebases across participants.

As a result, each participant started the experiment with either

VS or CP. Also their first tasks were performed on either LM

4This assumption will later be examined in the Discussion section.

46



TABLE I: Comparison of the two codebases used in the user

studies: Library Manger (LM) and Memory Game (MG). LoC
is lines of code reported by the line counting program cloc.5

Codebase No. Classes LoC LoC (largest class)

LM 14 977 237

MG 16 1753 791

TABLE II: Different experiment groups. Group names are only

for tracking the number of participants in each permutation of

the study.

Group First First Second Second
Name Tool Codebase Tool Codebase

A VS LM CP MG

B CP MG VS LM

C VS MG CP LM

D CP LM VS MG

or MG. The possible permutations divided our participants into

four groups detailed in Table II. By recruiting 28 participants,

we had 7 participants per group. We randomly assigned a

participant to a group. This results in a balanced mixed-effects

design in which all possibilities and orders are considered.

On each codebase, the participants were asked to perform

five tasks, each with a varying degree of difficulty. These tasks

are presented in Table III. Among these, some tasks force the

participant to explore the codebase, whereas other tasks were

directly related to a participant’s understanding of the codebase,

the program structure and the logic behind it. Tasks T1 and

T2 were similar for both codebases. Task T3 asked about the

object-oriented relationship between classes A and B. In LM,
this relationship was inheritance and in MG this relationship

was having a common parent class (A and B are siblings)6.
Prior to being tasked with T4, the participants were asked to

try out a particular feature of the program. Upon the trial, the

program would crash prematurely and no output was produced.

The participants were told that the reason for this behavior was

a simple intentional bug and were tasked with finding the likely

location of the bug. For task T5, the participants were asked

to imagine a scenario where somebody asked them about their

approach for adding a new feature to the particular codebase

that they were working on. In LM, they were asked to add

additional menu options for specific types of users. In MG,

they were asked to modify the scoring system to penalize the

player for each mistake. We should note that neither of these

tasks involve writing any code. This was necessary because

at the time of this writing, CP did not incorporate a code

editor. Also, we are primarily interested in determining the

effects of CP on code understanding. The participants were

responsible for showing a suitable location in the logic to add

these features. There were multiple valid locations for each

task in either codebase and the participants were free to select

any of the valid locations. When performing any of these tasks,

5http://cloc.sourceforge.net/
6The selected classes were the same for all participants.

TABLE III: Participant tasks. Each task was timed. We used

these measurements for our quantitative analysis.

Task

T1 Find a valid username to login into the program.

T2 Find an abstract class in the codebase.

T3 Determine the relationship between classes A and B.
T4 Find an intentional bug that causes a program crash.

T5 Pinpoint a reasonable location in the code for adding the

necessary logic to support feature X.

TABLE IV: Post-task questionnaire. Participants answered these

questions on a 7-point Likert scale after finishing their tasks

with both tools. We used this data for our qualitative analysis.

Post Task Questionnaire

Q1 I found it easy to work with CP/VS.
Q2 I found it easy to become familiar with CP/VS.
Q3 CP/VS helps me become familiar with codebase’s structure.
Q4 It was easy to navigate through the code with CP/VS.
Q5 It was easy to find the definition of some variable with CP/VS.
Q6 How much did you like CP/VS?
Q7 How did you feel when using the tool?
Q8 It was easy to find what I wanted in the code using CP/VS.

the users were explicitly told that they were not allowed to use

the debugging features of VS, nor the search functionality for

finding a specific type or class. They were, however, permitted

to use VS’s built-in go-to definition feature by holding down
the control key and clicking with the mouse on a user-defined

type. After performing the tasks, the participants were given

three questionnaires to fill out.

Metrics. For quantitative data, we recorded the time each

participant took to perform each task. The qualitative mea-

surement was performed using the post-task and post-study

questionnaires. After performing the tasks with each tool, the

participants were given a post-task questionnaire that asked

them to share their experience about the tool they worked with.

These questions were the same for both tools and are shown

in Table IV. The responses to these questions were measured

on a 7-point Likert scale (1 = the most negative response, 7 =

the most positive response).

Upon the completion of all tasks, the participants were given

a post-study questionnaire to measure their preferences of both

tools from different aspects. This questionnaire is detailed in

Table V. The participants were required to select either VS or

CP in their responses to each question.

A. Results

As mentioned before, we recorded quantitative as well as

qualitative data. To analyze these data, we divided all of

our participants into two equally sized groups based on their

experience in C# and software development. We leveraged

the results of the C# skill-test as well as the self-declared

answers to determine the skill level of each participants. The

skill-test questions were weighted twice as much in order to

47



TABLE V: Post-study questionnaire. Participants answered

these questions after finishing all their tasks with both tools.

The answer to each question is either CP or VS. We used this

data for qualitative analysis.

Post Study Questionnaire

SQ1 Which tool is more comfortable to use?

SQ2 Which tool is more likable?

SQ3 Which tool is more natural?

SQ4 Which tool is easier to use?

SQ5 Which tool is more fun to use?

SQ6 Which tool is more frustrating?

SQ7 Which tool helps you more in remembering the

codebase structure?

SQ8 Which tool do you prefer for learning a codebase?

SQ9 Which tool do you prefer for a codebase

you are already familiar with for additional work?

SQ10 Which tool do you prefer for finding a particular

class/variable?

SQ11 Which tool do you prefer for tracking down a bug?

SQ12 Overall, which tool is better?

reduce potential over- or undervaluation of the self-declared

responses.

In summary, our experiments have three factors: tool,

codebase and experience. The tool factor has two levels: CP

or VS, the codebase factor has two levels: LM or MG and the

experience factor has two levels: beginner or expert.

1) Quantitative Results: Our quantitative results are based
on the time a participant took to complete an assigned

task. When validating ANOVA assumptions, we found that

most group response variables failed the Shapiro-Wilk nor-

mality tests. Since our factorial design contains 3 factors

(Codebase×Tool×Experience) with two levels each, we de-
cided to utilize the Aligned Rank Transform (ART) [39] to

make the data suitable for ANOVA. The mean time task

completion results could be find in Figure 37. The analysis of

these results are presented in Table VI.

2) Qualitative Results: Our qualitative results are comprised
of two parts. The first part consists of the responses of

the participants to the Likert-scale questions in the post-task

questionnaire. The second part consists of the responses of the

participants to the questions in the post-study questionnaire.

a) Post-Task Questionnaire: The responses to the Likert-
scale questions in our post-task questionnaire failed the Shapiro-

Wilk normality tests. As such, similar to our quantitative results,

we utilized ART [39] for ANOVA. Table VII summarizes the

analyses of our data. Average ratings for the eight post-task

questions are shown in Figure 4.

b) Post-Study Questionnaire: The post-study question-
naire required the participant to pick one tool for each question

(see Table V). Since each question had only two choices,

we used Chi-squared test to analyze the results. Table VIII

summarizes the analyses of our data. We noticed that a few

participants left some of the questions unanswered.

7All error bars are standard error values.

B. Discussion

The goal of this user study was to determine the degree to

which we achieved our design goals with CP. Specifically, we

were interested in determining how much it helps in learning

a codebase (H1), how engaging is to work with CP especially

for novice users (H2), how the users feel about working with

it and how it compares against a traditional IDE such as VS

(H3). Our results can be discussed from various aspects.

On the tool level and from a qualitative aspect, it is evident

that the participants found CP significantly easier than VS

to get familiar with, even though all participants had prior

familiarity and experience with VS. The participants also found

CP to be significantly more beneficial in becoming familiar

with a codebase compared to VS. Both of these results were

obtained regardless of the participant’s experience, i.e. both
experts and beginners found CP to be superior than VS in these

two categories and this confirm our first and third hypotheses.

Referring to the post-study questionnaire (see Table V), we see

that the participants believed CP to be more likable compared to

VS. Further, they believed that CP not only helped in learning

the code structure but also helped them in remembering the

code they studied and also finding the code elements that

they were looking for. The interesting observation here is

that all 28 participants unanimously believed that CP was

more enjoyable which indicates that we achieved our goal

of designing an engaging tool (H2). Note that the results

in all these categories were statistically significant. These

results are further corroborated by the written feedback that our

participants provided. Participants found CP to be “generally
easier [than VS] to understand the structure of the code” and
also felt that they were “using [their] spatial memory” when
working with CP. These results show that regardless of the

participant’s experience our three hypotheses are valid.

In the remaining qualitative categories, there was no sig-

nificant difference observed in users’ responses between CP

and VS. This is again interesting because VS has been in

development since 1997 and has gone through many iterations

and refinements, whereas CP has only been in development

for about 6 months.

Our results indicate an interaction between the tool’s ease of

use and the participants’ experience levels (Q1). A closer look

at the responses (see Figure 5a) reveals that the beginners

found CP to be easier to work with. Conversely, experts

found VS to be easier. This coincides with what one would

expect: the prior experience of the experts with VS gives them

an edge in performing the assigned task. As a result, those

participants found VS easier to work with compared to CP.

When asked about their opinion, one user described CP as “an
amusement park for beginners”. Another user told us: “With
more polish (smoother experience), I think there is promise for
CP (especially for new programmers)”.
We observe an interaction effect between tool and the

codebase for users’ perceived facility with finding variable

definitions (Q5). The mean responses for this question are

detailed for each codebase in Figure 5b. From LM to MG,

we see an increase in the mean response values for CP, but

48



0

50

100

150

200

250

300

T1 T2 T3 T4 T5

Av
er

ag
e 

Ti
m

e(
s)

Beginner Expert

(a) MTTC by experience level.

0

50

100

150

200

250

300

T1 T2 T3 T4 T5

Av
er

ag
e 

Ti
m

e(
s)

CP VS

(b) MTTC based on the tool used.

0

50

100

150

200

250

300

T1 T2 T3 T4 T5

Av
er

ag
e 

Ti
m

e 
(s

)

LM MG

(c) MTTC based on the codebase.

Fig. 3: Mean time to task completion (MTTC). All time values are reported in seconds.

TABLE VI: ANOVA results on the quantitative data (time to task completion). Statistically significant results (95% confidence)

are highlighted in gray. The first column (TT) is task time. Codebase is abbreviated as CB. Experience level is abbreviated as
Exp.

TT CB Tool Exp. Tool×CB CB×Exp. Tool×Exp. Tool×CB×Exp.

F1,24 p-value F1,24 p-value F1,24 p-value F1,24 p-value F1,24 p-value F1,24 p-value F1,24 p-value

T1 3.92 = 0.06 12.0 < 0.05 7.53 < 0.05 0.78 = 0.39 0.49 = 0.49 0.19 = 0.66 0.10 = 0.75

T2 1.18 = 0.29 0.32 = 0.58 3.71 = 0.07 0.46 = 0.50 0.63 = 0.44 0.04 = 0.84 0.46 = 0.51

T3 45.2 < 0.05 15.9 < 0.05 5.70 < 0.05 1.02 = 0.32 0.58 = 0.46 6.01 < 0.05 0.00 = 0.95

T4 0.70 = 0.41 0.03 = 0.86 3.56 = 0.07 0.15 = 0.70 0.11 = 0.74 0.10 = 0.76 0.71 = 0.41

T5 7.71 < 0.05 41.9 < 0.05 0.08 = 0.78 3.93 = 0.06 1.35 = 0.26 0.32 = 0.58 0.05 = 0.82

TABLE VII: ANOVA results on the qualitative data (post-task questionnaire). Statistically significant results (95% confidence)

are highlighted in gray. Codebase is abbreviated as CB. Experience level is abbreviated as Exp.

Question CB Tool Exp. Tool×CB CB×Exp. Tool×Exp. Tool×CB×Exp.

F1,24 p-value F1,24 p-value F1,24 p-value F1,24 p-value F1,24 p-value F1,24 p-value F1,24 p-value

Q1 1.00 = 0.33 0.94 = 0.34 1.94 = 0.18 2.35 = 0.14 0.55 = 0.47 9.10 < 0.05 0.06 = 0.81

Q2 0.91 = 0.35 7.98 < 0.05 7.81 < 0.05 2.45 = 0.13 0.61 = 0.44 0.00 = 0.98 0.00 = 0.98

Q3 0.02 = 0.89 14.2 < 0.05 2.35 = 0.14 0.70 = 0.41 0.57 = 0.46 0.04 = 0.84 0.08 = 0.77

Q4 0.10 = 0.75 2.10 = 0.16 8.18 < 0.05 0.34 = 0.56 0.12 = 0.74 0.81 = 0.38 0.38 = 0.54

Q5 0.97 = 0.33 0.16 = 0.69 1.07 = 0.31 4.44 < 0.05 0.02 = 0.90 0.23 = 0.64 0.16 = 0.69

Q6 0.38 = 0.54 0.28 = 0.60 3.35 = 0.08 0.14 = 0.71 0.00 = 0.97 0.09 = 0.77 0.07 = 0.80

Q7 0.09 = 0.77 1.10 = 0.30 11.3 < 0.05 0.43 = 0.52 0.05 = 0.82 0.10 = 0.75 0.28 = 0.60

Q8 0.11 = 0.74 0.27 = 0.61 3.04 = 0.09 0.27 = 0.61 0.67 = 0.42 0.03 = 0.86 0.00 = 0.95

TABLE VIII: Chi-squared analysis on the post-study responses.

Statistically significant results (95% confidence) are highlighted.

The numbers in VS and CP columns represent the total times

each tool was selected by the participant in response to a

question. The winner in each significant category is highlighted.

Question VS CP Chi-squared Test

SQ1 21 7 χ2(1, N = 28) = 7.00 p < 0.05

SQ2 8 20 χ2(1, N = 28) = 5.14 p < 0.05

SQ3 16 12 χ2(1, N = 28) = 0.57 p = 0.45

SQ4 17 11 χ2(1, N = 28) = 1.29 p = 0.26

SQ5 0 28 χ2(1, N = 28) = 28.00 p < 0.05

SQ6 11 13 χ2(1, N = 24) = 0.17 p = 0.68

SQ7 5 23 χ2(1, N = 28) = 11.57 p < 0.05

SQ8 7 21 χ2(1, N = 28) = 7.00 p < 0.05

SQ9 19 9 χ2(1, N = 28) = 3.57 p = 0.06

SQ10 15 13 χ2(1, N = 28) = 0.14 p = 0.71

SQ11 19 9 χ2(1, N = 28) = 3.57 p = 0.06

SQ12 16 11 χ2(1, N = 27) = 0.93 p = 0.34

0

1

2

3

4

5

6

7

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Li
ke

rt
 S

ca
le

CP VS

Fig. 4: Mean responses to the post-study questionnaire for CP

and VS.

a decrease in the responses for VS. One possible explanation

for the small superiority of CP over to VS on MG is that MG

contains more code with larger classes (see Table I). It could

be that this larger size and the existence of more clutter give

CP a slight edge when finding the definition of variables. This

could potentially lead to the conclusion that CP is a more

favorable tool for larger projects. However, this conclusion is

49



0

1

2

3

4

5

6

7

Beginner Expert

Li
ke

rt
 S

ca
le

VS CP

(a) Q1

0

1

2

3

4

5

6

7

LM MG

Li
ke

rt
 S

ca
le

VS CP

(b) Q5

Fig. 5: (a) Difference of averages between VS and CP grouped

by user experience for Q1 responses. (b) Difference of averages

between VS and CP grouped by codebase for Q5 responses.

0
20
40
60
80

100
120
140

Beginner Expert

Av
er

ag
e 

Ti
m

e(
s)

VS CP

Fig. 6: The average time spent on completing T3 based on

each tool and the participants’ experience level.

premature and we believe a more detailed study is warranted

to examine this interaction in more details.

On the tool level and from a quantitative point of view, it is

evident that the choice of tool had a significant effect on time

to completion of three tasks. Finding a valid username to login

into the program (T1), determining the relationship between

two classes (T3) and pinpointing a reasonable location in the

code for adding the necessary logic to support some feature

(T5). In all these cases, participants took significantly less time

to complete their tasks with VS compared to CP. There are

several possible explanations for this observations.

The first is the existence of transition animations in CP. As

discussed in User Interface Design, the animations were neces-

sary to preserve the user’s sense of environmental awareness.

At any instance of time, the length of these animations depend

on the camera’s relative position to each code room and also

the size of the codebase. Nevertheless, every animation was

at least 1.5 seconds long. Considering a hypothetical situation

where a user is in bird’s view and wants to switch to first-

person mode to inspect a code room and then go back to

bird’s view, the transition animations take about 3 seconds.

It takes a significantly less amount of time to open two files

consecutively in VS.

Another possible explanation for observing faster task

completion times with VS is that, CP provides more interaction

capabilities compared to VS and 3D interactions are inherently

slower compared to 2D interactions because of the added

degree of freedom. When a user is inside a code room in

CP, they have the freedom of walking around, looking at the

wallpapers or clicking on the wallpapers to inspect the code

more closely. All these interactions take time. We also gained

some insight about this issue from a different perspective. Often

times, after we assigned a task to a participant, we noticed

that some participants started to “play” with the interface or

wander about aimlessly for a few seconds: due to the game-like

environment of CP, they occasionally walked around the room

and inspected the visual aspects of the environment, or would

make a verbal note about something in the environment that

was irrelevant to the assigned task (such as how realistic the

reflection effect was on the floor tiles, or how the grass texture

looked unrealistic).

Focusing on the quantitative results based on the experience

level of the participants, reveals other findings. As one would

expect, and regardless of the tool, beginners generally took

more time to finish their tasks compared to experts. The other

result of interest is the observed interaction effect between the

tool and the experience of the participants. Figure 6 presents the

average time spent on determining the relationship between two

classes (T3) based on each tool and the participants’ experience

level. The increase in the average time spent by the beginners

when they switched from VS to CP was much more than

this increase for experts. Without a more detailed study, it is

difficult to draw any concrete conclusions. Informally, we think

a possible explanation could be that it takes more time for the

beginners to realize they do not know how to tackle T3. As a

result, they take their time and explore the code further with

CP, hoping to find a clue that aids them in completing the task.

Considering the codebase aspect of our study and focusing

on the quantitative results, we see that the choice of codebase

only affected the time spent for completing T3 (determining

the relationship between two classes) and T5 (pinpointing a

reasonable location in the code for adding the necessary logic

to support some feature). This observation can be explained

by noting the difference in the sizes of the two codebases. As

detailed in Table I, MG is larger and more cluttered than LM.

For T5, where the participants needed to study the code more

closely, it generally took them longer to browse through MG

compared to LM. Other than task completion time, the choice

of codebase did not significantly affect the qualitative results.

This bolsters our initial assumption that the two codebases

were very similar and the choice of the codebase, would not

significantly affect our results.

V. EVALUATION: UNDERSTANDING PROJECT

ORGANIZATION

With the goal of determining the suitability of CP in the task

of organizing an existing project, we designed and performed

a second user study. In this user study, the users are tasked

with organizing an existing project in Code Park in any way

they saw fit.

50



(a) Participant 1 (b) Participant 2 (c) Participant 3

(d) Participant 4 (e) Participant 5 (f) Participant 6

(g) Participant 7 (h) Participant 8 (i) Participant 9

Fig. 7: Screenshots of participants project organization.

Participants and Experience Design. We recruited 9 partic-
ipants (8 males and 1 female ranging in age from 18 to 29

with a mean age of 22.8). Our requirements for participants

were similar to the previous study, i.e. familiarity with the

C# language. Each participant was compensated with $10

for their efforts at the end of the study session. Once again,

each participant was given a pre-questionnaire containing some

demographic questions as well as some questions asking about

their experience in developing C# applications.

Each participant was tasked with placing all 33 classes of an

existing project in CP’s environment in a manner that they saw

reasonable. As a result, they were free to organize the classes

in any way they preferred. We separated our participants into

two groups of 5 and 4.

The classes in the project that was given to the first group

were already organized into directories based on their relation

(e.g. classes that handled user input were all inside of a directory

called “input”). Conversely, the classes in the project that was

given to the second group were not organized in any particular

manner (i.e. all classes were inside the same directory). The

goal of such separation was to observe whether grouping the

classes based on their inherent relationships would affect users’

decisions.

A. Results

As evident in Figure 7a to Figure 7e, the organization

performed by the participants mostly followed the directory-

based organization of the project that was given to them. Some

participants chose to place the contents of each directory in a

separate line while others chose to spatially group them into a

group of adjacent blocks. We asked the participants about their

reasoning for such arrangements and obtained the following

responses:

Participant 1: “Folders were arranged spatially in
groups. Classes that appeared related by name were
sub-grouped.”
Participant 2: “[I kept] directories grouped to-
gether.”
Participant 3: “I just arranged classes of a particu-
lar folder in each row.”
Participant 4: “The classes were arranged alpha-
betically for each folder and I arranged the classes
in the same folder in the same line.”
Participant 5: “I tried to group the related class
together based on the usefulness and field.”

Figure 7f to 7i depicts the results obtained from the second

group of participants. When asked about their reasoning for

their decisions, the following responses were obtained:

Participant 6: “When arranging the classes my first
concern was to group similar classes together. After
considering which groups existed, I tried to come up
with a hierarchy based on the classes size. So I put

51



bigger classes on the side and all the smaller ones
in the middle.”
Participant 7: “I tried to place the rooms in the
chunk of similar classes. My priority was to place
them in such a way that they are easy to find again.”
Participant 8: “I grouped the rooms based on their
classes’ name.”
Participant 9: “Big models together. Smaller ones
in the middle so I can find them easier.”

B. Discussion

In this user study our goal was to determine how users

organize a project in CP environment in a way that the final

result helped them remember the location of each class. The

results show a possible relation between the user’s cognitive

understanding of the codebase and their decisions in organizing

building block of the project when working with CP. As shown

in Figure 7, users mostly chose to organize the constituent

parts of the project based on their relationship with respect to

each other.

In cases where the project files were already organized into

directories, users mostly followed that same organization when

working with CP. However, if the project lacked an inherent

organization, users’ decisions were guided either by the size of

each class or the semantic relationship of those classes. Users

mostly elected to organize similar parts of the project in the

close proximity of each other. This is inline with the results

observed in [40] where the increase in spatial dispersion of

objects resulted in more difficulty in processing and attentional

allocation.

VI. LIMITATIONS AND FUTURE WORK

There are a few notable limitations associated with the design

of our first study and CP in general. First, we realize that our

comparison with VS could potentially bias the results. This

is because most C# developers have experience with VS and

such prior familiarity could affect their responses. Second,

comparing VS which is fast and responsive to an interface that

has animations and is slower may not result in a completely

fair assessment.

Another limitation is that we compared VS against CP on a

strict code understanding basis. Compared to VS, CP misses

code editing or debugging functionalities. Also, CP currently

only supports C# codebases. However, it can be easily extended

to any object-oriented programming language. Given these

limitations, our results and the participants’ feedback indicate

a trend in preference for CP and tools that drastically change

the way a programmer interacts with the code. Our results

show that CP is at least as good as a professional tool such as

VS in learning a codebase.

We plan to address these limitations by incorporate more

functionality into CP such as a code editor and a debugger.

These were the most requested features by our user study

participants. We also would like to perform a more in-depth

study to observe how CP would affect the learning of a group

of novice programmers in a semester long course similar to the

work of Saito et al. [38]. Zorn et al. [41] examined the game

Minecraft as a means of increasing interest in programming.

It would be interesting to perform a similar study on CP and

evaluate its effectiveness on programming.

Beyond system hardware limits, we believe CP can scale,

through extended metaphors. Since a world of buildings will

likely become incomprehensible, we expect a project to grow

from buildings to districts, to cities, to regions, and so on.

Understanding the boundary and limit of each is future work.

We also plan to evaluate CP in virtual reality (VR) and

augmented reality (AR) environments. It would be interesting

to design an AR system that employs CP to aid in code

understanding while allowing programmers to naturally use

the mouse and the keyboard.

VII. CONCLUSION

We presented Code Park, a 3D code visualization tool

designed to improve learning a codebase. Code Park lays

out an existing codebase in a 3D environment and allows

users to explore and study the code in two modalities, a bird’s

eye view mode and a first-person view mode. We performed

a user study to evaluate the usability and the effectiveness

of Code Park in comparison to Microsoft Visual Studio in

performing a series of task related to the user’s understanding

of the codebase. We then performed a follow up user study to

evaluate how users would organize an existing project in the

3D environment in a manner that would help them remember

the codebase later. The analysis of our results demonstrated

the benefits of Code Park as a viable tool for understanding an

existing codebase. Our participants found Code Park to be easy

to learn, instrumental in understanding as well as remembering

the structure of a codebase, and enjoyable to use. Our analysis

of the first study revealed that the participants that did not

have a strong programming background found Code Park to be

easier to work with compared to Microsoft Visual Studio. The

result of second study showed that the users tend to organize

project in a semantically meaningful form.

VIII. ACKNOWLEDGEMENTS

This work is supported in part by NSF Award IIS-1638060,

Lockheed Martin, Office of Naval Research Award ONR-

BAA15001, Army RDECOM Award W911QX13C0052, and

Coda Enterprises, LLC. We also thank the ISUE lab members

at UCF for their support as well as the anonymous reviewers

for their helpful feedback.

REFERENCES

[1] S. C. Eick, J. L. Steffen, and E. E. Sumner, “Seesoft-a tool for
visualizing line oriented software statistics,” IEEE Transactions on
Software Engineering, vol. 18, no. 11, pp. 957–968, Nov 1992.

[2] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code bubbles: Rethinking
the user interface paradigm of integrated development environments,”
in Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ser. ICSE ’10. New York, NY, USA:
ACM, 2010, pp. 455–464.

[3] R. Wettel and M. Lanza, “Visually localizing design problems with
disharmony maps,” in Proceedings of the 4th ACM Symposium on
Software Visualization, ser. SoftVis ’08. New York, NY, USA: ACM,
2008, pp. 155–164.

52



[4] A. D. Baddeley, Human memory: Theory and practice. Psychology
Press, 1997.

[5] J. Sweller, “Cognitive load theory, learning difficulty, and instructional
design,” Learning and Instruction, vol. 4, no. 4, pp. 295 – 312, 1994.

[6] R. M. Carini, G. D. Kuh, and S. P. Klein, “Student engagement and
student learning: Testing the linkages*,” Research in Higher Education,
vol. 47, no. 1, pp. 1–32, 2006.

[7] N. Burgess, E. A. Maguire, and J. O’Keefe, “The human hippocampus
and spatial and episodic memory,” Neuron, vol. 35, no. 4, pp. 625 – 641,
2002.

[8] J. D. Mackinlay, G. G. Robertson, and S. K. Card, “The perspective
wall: Detail and context smoothly integrated,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’91. New York, NY, USA: ACM, 1991, pp. 173–176. [Online].
Available: http://doi.acm.org/10.1145/108844.108870

[9] M. Balzer and O. Deussen, “Level-of-detail visualization of clustered
graph layouts,” in Visualization, 2007. APVIS ’07. 2007 6th International
Asia-Pacific Symposium on, Feb 2007, pp. 133–140.

[10] D. Bonyuet, M. Ma, and K. Jaffrey, “3d visualization for software
development,” in Web Services, 2004. Proceedings. IEEE International
Conference on, July 2004, pp. 708–715.

[11] N. Hawes, S. Marshall, and C. Anslow, “Codesurveyor: Mapping large-
scale software to aid in code comprehension,” in 2015 IEEE 3rd Working
Conference on Software Visualization (VISSOFT), Sept 2015, pp. 96–105.

[12] Y. Tymchuk, L. Merino, M. Ghafari, and O. Nierstrasz, “Walls, pillars
and beams: A 3d decomposition of quality anomalies,” in 2016 IEEE
Working Conference on Software Visualization (VISSOFT), Oct 2016, pp.
126–135.

[13] O. Greevy, M. Lanza, and C. Wysseier, “Visualizing feature interaction
in 3-d,” in 3rd IEEE International Workshop on Visualizing Software for
Understanding and Analysis, 2005, pp. 1–6.

[14] G. Balogh and A. Beszedes, “Codemetrpolis: A minecraft based
collaboration tool for developers,” in 2013 First IEEE Working Conference
on Software Visualization (VISSOFT), Sept 2013, pp. 1–4.

[15] L. Merino, M. Ghafari, O. Nierstrasz, A. Bergel, and J. Kubelka, “Metavis:
Exploring actionable visualization,” in 2016 IEEE Working Conference
on Software Visualization (VISSOFT), Oct 2016, pp. 151–155.

[16] A. R. Teyseyre and M. R. Campo, “An overview of 3d software visual-
ization,” IEEE Transactions on Visualization and Computer Graphics,
vol. 15, no. 1, pp. 87–105, Jan 2009.

[17] P. Caserta and O. Zendra, “Visualization of the static aspects of software:
A survey,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, no. 7, pp. 913–933, July 2011.

[18] A. Marcus, L. Feng, and J. I. Maletic, “3d representations for software
visualization,” in Proceedings of the 2003 ACM Symposium on Software
Visualization, ser. SoftVis ’03. New York, NY, USA: ACM, 2003, pp.
27–ff.

[19] C. Kurtz, “Code gestalt: A software visualization tool for human beings,”
in CHI ’11 Extended Abstracts on Human Factors in Computing Systems,
ser. CHI EA ’11. New York, NY, USA: ACM, 2011, pp. 929–934.

[20] M. Lanza and S. Ducasse, “A categorization of classes based on the
visualization of their internal structure: The class blueprint,” SIGPLAN
Not., vol. 36, no. 11, pp. 300–311, Oct. 2001.

[21] C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert, and P. Mutzel,
“A new approach for visualizing uml class diagrams,” in Proceedings of
the 2003 ACM Symposium on Software Visualization, ser. SoftVis ’03.
New York, NY, USA: ACM, 2003, pp. 179–188.

[22] M. Balzer, O. Deussen, and C. Lewerentz, “Voronoi treemaps for the
visualization of software metrics,” in Proceedings of the 2005 ACM
Symposium on Software Visualization, ser. SoftVis ’05. New York, NY,
USA: ACM, 2005, pp. 165–172.

[23] D. Holten, “Hierarchical edge bundles: Visualization of adjacency
relations in hierarchical data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 741–748, Sept 2006.

[24] A. Cockburn and B. McKenzie, “Evaluating the effectiveness of spatial
memory in 2d and 3d physical and virtual environments,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’02. New York, NY, USA: ACM, 2002, pp. 203–210.

[25] G. Robertson, M. Czerwinski, K. Larson, D. C. Robbins, D. Thiel, and
M. van Dantzich, “Data mountain: Using spatial memory for document
management,” in Proceedings of the 11th Annual ACM Symposium on
User Interface Software and Technology, ser. UIST ’98. New York, NY,
USA: ACM, 1998, pp. 153–162.

[26] H. Graham, H. Y. Yang, and R. Berrigan, “A solar system metaphor for 3d
visualisation of object oriented software metrics,” in Proceedings of the

2004 Australasian Symposium on Information Visualisation - Volume 35,
ser. APVis ’04. Darlinghurst, Australia, Australia: Australian Computer
Society, Inc., 2004, pp. 53–59.

[27] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz, “Software
landscapes : Visualizing the structure of large software systems,” in
Joint Eurographics - IEEE TCVG Symposium on Visualization (VisSym),
2004.

[28] T. Panas, T. Epperly, D. Quinlan, A. Saebjornsen, and R. Vuduc, “Commu-
nicating software architecture using a unified single-view visualization,” in
12th IEEE International Conference on Engineering Complex Computer
Systems (ICECCS 2007), July 2007, pp. 217–228.

[29] S. Alam and P. Dugerdil, “Evospaces visualization tool: Exploring
software architecture in 3d,” in 14th Working Conference on Reverse
Engineering (WCRE 2007), Oct 2007, pp. 269–270.

[30] C. Knight and M. Munro, “Virtual but visible software,” in Information
Visualization, 2000. Proceedings. IEEE International Conference on,
2000, pp. 198–205.

[31] G. Langelier, H. Sahraoui, and P. Poulin, “Visualization-based analysis
of quality for large-scale software systems,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering,
ser. ASE ’05. New York, NY, USA: ACM, 2005, pp. 214–223.

[32] S. Cooper, W. Dann, and R. Pausch, “Alice: A 3-d tool for introductory
programming concepts,” in Proceedings of the Fifth Annual CCSC
Northeastern Conference on The Journal of Computing in Small Colleges,
ser. CCSC ’00. USA: Consortium for Computing Sciences in Colleges,
2000, pp. 107–116.

[33] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: Programming for all,” Commun. ACM, vol. 52, no. 11,
pp. 60–67, Nov. 2009.

[34] D. Parsons and P. Haden, “Parson’s programming puzzles: A fun and
effective learning tool for first programming courses,” in Proceedings of
the 8th Australasian Conference on Computing Education - Volume 52,
ser. ACE ’06. Darlinghurst, Australia, Australia: Australian Computer
Society, Inc., 2006, pp. 157–163.

[35] K. Kahn, “Toontalk tman animated programming environment for
children,” Journal of Visual Languages & Computing, vol. 7, no. 2,
pp. 197–217, 1996.

[36] E. Perrin, S. Linck, and F. Danesi, “Algopath: A new way of learning
algorithmic,” in in The Fifth International Conference on Advances in
Computer-Human Interactions, 2012.

[37] C. Kelleher and R. Pausch, “Using storytelling to motivate programming,”
Commun. ACM, vol. 50, no. 7, pp. 58–64, Jul. 2007.

[38] D. Saito, H. Washizaki, and Y. Fukazawa, “Influence of the programming
environment on programming education,” in Proceedings of the 2016
ACM Conference on Innovation and Technology in Computer Science
Education, ser. ITiCSE ’16. New York, NY, USA: ACM, 2016, pp.
354–354.

[39] J. O. Wobbrock, L. Findlater, D. Gergle, and J. J. Higgins, “The aligned
rank transform for nonparametric factorial analyses using only anova
procedures,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’11. New York, NY, USA: ACM, 2011,
pp. 143–146.

[40] A. B. Abbes, E. Gavault, and T. Ripoll, “The effect of spatial organization
of targets and distractors on the capacity to selectively memorize objects
in visual short-term memory,” Advances in cognitive psychology, vol. 10,
no. 3, p. 90, 2014.

[41] C. Zorn, C. A. Wingrave, E. Charbonneau, and J. J. LaViola Jr, “Exploring
minecraft as a conduit for increasing interest in programming,” in
Proceedings of the International Conference on the Foundations of
Digital Games 2013 (FDG 2013), 2013, pp. 352–359.

53


