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Motivation

Gesture interactions are as popular as ever...
• Novel interactions techniques
• Fast and (mostly) reliable
• Sensors are getting better

Challenges:
• Many devices
• Many modalities
• And most importantly...
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Motivation (cont’d)

The Tyranny of Choice!
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Contributions

Our method puts focus on application:
• Easy to understand
• Easy to implement and use
• Ease to train, not much parameter tuning

◦ Various datasets (small, large)
◦ Various modalities

• Quick training, even without powerful hardware
• High recognition accuracy
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DeepGRU
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DeepGRU
Encoder Network

• Standard gated recurrent units (GRUs)
• We used GRUs because they are faster and simpler than LSTMs!

ht = Γ
(
xt, h(t−1)

)
rt = σ

((
W r

x xt + brx
)

+
(
W r

h h(t−1) + brh
))

ut = σ
((

Wu
x xt + bux

)
+
(
Wu

h h(t−1) + buh
))

ct = tanh
((

W c
x xt + bcx

)
+ rt

(
W c

h h(t−1) + bch
))

ht = ut ◦ h(t−1) +
(
1− ut

)
◦ ct

• We zero-pad all inputs to the same length
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DeepGRU
Attention Module

• Learn the most important subsequences
• Compute the context vector c with trainable parameters Wc

◦ hL−1: last hidden state
◦ h̄: all hidden states from t = 0 to t = L− 1

c = softmax
(
h⊺
(L−1)Wch̄

)
h̄

=

 exp
(
h⊺
(L−1)Wch̄

)
∑L−1

t=0 exp
(
h⊺
(L−1)Wcht

)
 h̄

• Inspired by Luong [20] et al .
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DeepGRU
Attention Module (cont’d)
• Typically

[
c ; h(L−1)

]
is used, however...

◦ Susceptible to sequence length variation
• Use an additional GRU to decide what to do

c = softmax
(
h⊺
(L−1)Wch̄

)
h̄

c′ = Γattn
(
c, h(L−1)

)
oattn =

[
c ; c′

]
• Final output

ŷ = softmax
(

FC2

(
ReLU

(
FC1(oattn)

)))
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DeepGRU
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Experiments

• UT-Kinect
◦ 10 gestures, 10 participants, 2 times (200 samples)

• NTU RGB+D
◦ 60 action classes, 40 participants, multiple views/actors (56000 samples)

• SYSU-3D
◦ 12 gestures, 40 participants (480 samples)

• DHG 14/28
◦ 14/28 gestures, 28 participants (2800 samples)

• SBU Kinect Interactions
◦ 8 two-person interactions, 7 participants (282 samples)
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Results
UT-Kinect and SYSU-3D

Method Accuracy Method Accuracy

Histogram of 3D Joints [35] 90.9 GCA-LSTM (direct) [17] 98.5
LARP + mfPCA [1] 94.8 CNN + Feature Maps [31] 98.9
ST LSTM + Trust Gates [18] 97.0 GCA-LSTM (stepwise) [17] 99.0
Lie Group [32] 97.1 CNN + LSTM [22] 99.0
ST-NBNN [33] 98.0 KRP FS [8] 99.0
DPRL + GCNN [29] 98.5 DeepGRU 100.0

Results on the UT-Kinect dataset

Method Accuracy Method Accuracy

Dynamic Skeletons [12] 75.5 VA-LSTM [36] 77.5
ST LSTM + TG[18] 76.5 GCA-LSTM (stepwise) [17] 78.6
DPRL + GCNN [29] 76.9 DeepGRU 80.3

Results on the SYSU-3D dataset
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Results
NTU RGB+D

Modality Method Accuracy Modality Method Accuracy

CS CV CS CV

Image Multitask DL [21] 84.6 – Pose STA Model [28] 73.2 81.2
Glimpse Clouds [4] 86.6 93.2 CNN + Kernel Feature Maps [31] 75.3 –

Pose+Image DSSCA - SSLM [25] 74.9 – SkeletonNet [13] 75.9 81.2
STA Model (Hands) [3] 82.5 88.6 GCA-LSTM (direct) [17] 74.3 82.8
Multitask DL [21] 85.5 – GCA-LSTM (stepwise) [17] 76.1 84.0

Pose Lie Group [32] 50.1 52.8 DPTC [34] 76.8 84.9
HBRNN [11] 59.1 64.0 VA-LSTM [36] 79.4 87.6
Dynamic Skeletons [12] 60.2 65.2 Clips+CNN+MTLN [14] 79.6 84.8
Deep LSTM [26] 60.7 67.3 View-invariant [19] 80.0 87.2
Part-aware LSTM [26] 62.9 70.3 DPRL + GCNN [29] 83.5 89.8
ST LSTM + TG [18] 69.2 77.7 DeepGRU 84.9 92.3

Results on the NTU RGB+D dataset

13 of 18



Experiments
DHG 14/28 and SBU Kinect Interactions

Protocol Method Accuracy Protocol Method Accuracy

C = 14 C = 28 C = 14 C = 28

Leave–
one–out

Chen et al . [7] 84.6 80.3 SHREC’17
[10]

HOG2 [23][10] 78.5 74.0

De Smedt et al . [9] 82.5 68.1 HIF3D [5] 90.4 80.4
CNN+LSTM [22] 85.6 81.1 De Smedt et al . [27][10] 88.2 81.9
DPTC [34] 85.8 80.2 DLSTM [2] 97.6 91.4
DeepGRU 92.0 87.8 DeepGRU 94.5 91.4

Results on the DHG 14/28 dataset

Method Accuracy Method Accuracy

HBRNN [11] 80.4 Clips + CNN + MTLN [14] 93.5
Deep LSTM [26] 86.0 GCA-LSTM (direct) [17] 94.1
Co-occurance Deep LSTM [37] 90.4 CNN + Kernel Feature Maps [31] 94.3
STA Model [28] 91.5 GCA-LSTM (stepwise) [17] 94.9
ST LSTM + Trust Gates [18] 93.3 VA-LSTM [36] 97.2
SkeletonNet [13] 93.5 DeepGRU 95.7

Results on the SBU Kinect Interactions dataset
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Experiments
Small Training Sets and Runtime

• Training with a very limited number of examples (at most 4 per-class)
◦ Inspired by the $-Family of recognizers
◦ Useful for gesture customization

• Datasets
◦ Acoustic: Over-the-air hand gestures via Doppler shifted soundwaves
◦ Wii Remote: Wii controller gestures

• Runtime experiments:
◦ How long to converge?
◦ Is training possible without powerful hardware?
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Experiments
Small Training Sets and Runtime (cont’d)

Dataset Method Accuracy Dataset Method Accuracy

τ = 2 τ = 4 τ = 2 τ = 4

Acoustic [24] Jackknife [30] 91.0 94.0 Wii Remote [6] Protractor3D [16] 73.0 79.6
DeepGRU 89.0 97.4 $3 [15] 79.0 86.1

Jackknife [30] 96.0 98.0
DeepGRU 92.4 98.3

Small training sets evaluation

Device Configuration Dataset Time Device Configuration Dataset Time

CPU 12 threads Acoustic [24] 1.7 GPU 2× GTX 1080 SHREC 2017 [10] 5.5
Wii Remote [6] 6.9 NTU RGB+D [26] 129.6

1× GTX 1080 SHREC 2017 [10] 6.2
SYSU-3D [12] 9.0
NTU RGB+D [26] 198.5

Training times (τ = 4 where applicable)
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Experiments
Ablation Study

• Study the effects of various components
• Clearly shows the advantage of GRUs

Attn. Rec. # Stck # FC Time Acc. Attn. Rec. # Stck # FC Time Acc.Unit Unit

- LSTM 3 1 162.2 91.7 ✓ LSTM 3 1 188.2 92.7
- LSTM 3 2 164.0 91.0 ✓ LSTM 3 2 192.1 92.0
- LSTM 5 1 246.4 91.9 ✓ LSTM 5 1 277.3 92.3
- LSTM 5 2 251.6 89.5 ✓ LSTM 5 2 283.3 92.2
- GRU 3 1 143.8 93.4 ✓ GRU 3 1 170.4 94.1
- GRU 3 2 148.0 93.3 ✓ GRU 3 2 174.0 93.8
- GRU 5 1 210.8 93.6 ✓ GRU 5 1 243.1 93.9
- GRU 5 2 212.9 93.8 ✓ GRU 5 2 248.6 94.5

Ablation study on DHG 14/28 dataset. Time is in seconds.

17 of 18



Future Outlook

• Requires segmented input
◦ Unsegmented training is straightforward
◦ Achieved the highest accuracy in SHREC’19 Online Gesture

Recognition challenge

• Study the different aspects of the network
◦ Sensitive to input dimensionality

• Works better with high-dimensional inputs
◦ Effects of regularization

• Reduce the need for paramter tuning
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Questions?
https://github.com/Maghoumi/DeepGRU
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