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ABSTRACT 
Those who design gesture recognizers and user interfaces of-
ten use data collection applications that enable users to com-
fortably produce gesture training samples. In contrast, games 
present unique contexts that impact cognitive load and have 
the potential to elicit rapid gesticulations as players react to 
dynamic conditions, which can result in high gesture form 
variability. However, the extent to which these gestures differ 
is presently unknown. To this end, we developed two games 
with unique mechanics, Follow the Leader (FTL) and Sleepy 
Town, as well as a standard data collection application. We 
collected gesture samples from 18 participants across all con-
ditions for gestures of varying complexity, and through an 
analysis using relative, global, and distribution coverage mea-
sures, we confirm significant differences between conditions. 
We discuss the implications of our findings, and show that 
our FTL design is closer to being an ecologically valid data 
collection protocol with low implementation complexity. 

Author Keywords 
Gestures, Games, Follow the Leader, Ecologically Validity 

CCS Concepts 
•Human-centered computing → Human computer inter-
action (HCI); Gestural input; User studies; 

INTRODUCTION 
Gestures remain a popular way of interacting with computers 
at the user interface boundary, thereby motivating researchers 
to continuously advance the state-of-the-art in pattern match-
ing and gesture set design [15, 29, 34]. To this end, practi-
tioners often collect test samples from participants using data 
collection techniques that allow one to focus solely on gestic-
ulation and form [6, 26, 35, 36]. Such data is useful, enabling 
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Figure 1: Gesture distributions elicited by three unique data 
collection applications from a single participant in our user 
study. Notice how form and varaibility differ signifcantly 
across the three conditions. 

one to make relative comparisons between techniques and 
demonstrate improvements. However, it is unlikely that ges-
tures produced in this way will capture variabilities present in 
form when one interacts with an application directly, making 
it difficult for researchers to understand how their efforts will 
translate into practice. 

Video games are one domain where such differences likely 
impact testing and experimentation. Prior research has shown 
that in-game gesture recognition accuracy is less than that 
of non-game data collected for training and testing within 
the same application [3, 27, 28]. Reasons for this drop are 
presently unknown, but one reasonable assumption is that 
gesture production variability increases with interaction com-
plexity. For example, players may interact directly with vir-
tual objects, and game-specific interaction requirements may 
alter gesture speed, size, orientation, and overall form. Un-
derstanding these differences will help inform practitioners 
on how to approach pattern recognition and user interface de-
sign for gestures. 
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Toward this end, we developed three data collection applica-
tions for stylus input on an interactive display. These include 
an application that implements a standard data collection pro-
tocol, a simple game called Follow the Leader (FTL), and a 
complex game called Sleepy Town. FTL introduces a trivial 
game play mechanic and is designed specifically for low im-
plementation effort, enabling others to quickly adopt a new 
data collection protocol into their own work that increases 
gesture variability. Finally, Sleepy Town presents a top-down 
city view and allows for navigation as well as gesture inter-
action with non-playable characters. Through a within sub-
jects experiment involving 18 participants, we quantify differ-
ences in gesture production between all conditions, confirm-
ing there does exist significant differences. We discuss our 
findings and their implications. Specifically, we contribute 
(1) a demonstration that commonly employed data collection 
practices inadequately capture gesture production variability 
relative to that found within practical applications generally 
and games specifically; and (2) an easy to implement proto-
col called Follow the Leader that increases gesture production 
variability, yet leverages technology already present in most 
data collection applications. 

RELATED WORK 
To ground our discussion, the relationship between two vari-
ables such as that between time and position is a signal encod-
ing information about an underlying process [23]. In the con-
text of a human computer interaction, this underlying process 
relates to an intentional communication designed to invoke a 
specific software function; and when this communication is in 
the form of a gesture, the process generates a well known neu-
romuscular response linked to the command that one expects 
their system to recognize. That is, one first decides to inter-
act with software in accordance with a user-specific objective, 
e.g., to make their avatar backflip in a video game. He or she 
then forms an action plan, a sequence of virtual targets con-
nected by neuromuscular commands that in aggregate form 
a complex trajectory. To model this behavior Plamondon in-
troduced the Kinematic Theory of rapid human movements 
[18, 19], which proposes that an action plan can be fully de-
scribed by a Sigma-Lognormal (ΣΛ) model [20]—a vectorial 
summation of individual lognormal primitives connecting the 
virtual targets. Each primitive comprising parameters related 
to activation time, duration, velocity, and angular position is 
processed by the motor cortex, which in turn activates the 
appropriate neuromuscular networks needed to generate the 
desired motion. Since the motor cortex works collaboratively 
with other mental processes, we should expect that a variety 
of factors influence human motion. 

Variability In Human Motion 
Although a prototypical action plan conforms to a standard, 
its effectuation will fall short of perfection due to fluctuations 
in physical and emotional state, cognitive load, ability, and 
other environmental factors. For example, Martín-Albo et al. 
found that each lognormal parameter follows a different ran-
dom distribution for handwritten words [16], and by perturb-
ing ΣΛ model parameters according to the identified distribu-
tions, they were able to generate realistic synthetic variations. 

Leiva et al. [10] use the same parameter set to generate real-
istic synthetic gestures. However, it was found that new pa-
rameter distributions were needed to synthesize gestures pro-
duced by those with low vision [11] because of differences in 
gesture production variability. 

Similarly, across populations, Vatavu et al. [31] as well as 
Hernandez-Ortega et al. [8] were able to differentiate be-
tween children and adult users based on differences in touch 
interactions. With respect to input devices, Taranta et al. [25] 
observed that the same gesture shapes collected across dif-
ferent device types produced differences in variability. Sim-
ilarly, it was found that gesticulation speed impacts form, 
where unnatural speeds related to increased variability [33]. 

Emotional state also plays an important role. Luria et al. [14] 
found that dis-automatization of fast and accurate spatial con-
trol manifests from physical and mental stress as increased 
handwriting variability in the form of velocity, movement du-
ration, and writing size. Similarly, Likforman-Sulem et al. 
[12] showed that stroke variability occurs from different emo-
tional states within a single person. Stress, anxiety, and de-
pression are particular culprits that cause variability to a de-
gree that the emotional state of the participant can be classi-
fied based on gesture stroke data. With respect to familiarity, 
Cao et al. [2] found that participants over time cut corners 
when stroking learned forms. Gesture form can also change 
temporally; Liu et el. [13] discovered that retraining a cus-
tom gesture recognizer between sessions with recent samples 
improved its performance. 

In the context of gesture recognition, it has been repeatedly 
observed that in-game accuracy drops relative to offline test-
ing [3, 27, 28]. A common theme among these works is that 
participants interact with a virtual environment, whether di-
rectly or indirectly. For instance, Par orror [27] allows play-
ers to combat enemies or navigate through an urban environ-

K 

ment using spatially relevant gestures. Similarly, Lemarc-
hand’s Prototype [28] encourages players to gesture with a 
stylus over incoming enemy zombie arms while manipulat-
ing a mechanical device through touch. We believe that in-
teraction with virtual objects is also an important source of 
variability as players must simultaneously attend to multiple 
stimuli. Cognitive load may be another factor, where divided 
attention over multiple tasks may impact care in gesture pro-
duction. To our knowledge, no effort has been made to un-
derstand differences between gestures collected for training 
and those sampled from a game environment. While we do 
not work to identify specific factors that cause variability in 
video games, we show that different application designs re-
sult in unique levels of gesture variability. 

Data Collection 
When it comes to data collection, researchers have tradition-
ally chosen to design a sample-centric environment to collect 
gesture samples: isolated samples are shown to users and a 
canonical correct way of performing them is demonstrated. 
Users are then expected to mimic those canonical forms a 
few times during a practice round and upon demonstrating 
acceptable gesticulation, the actual data collection starts. Ex-
amples include the UT-Kinect dataset [37] where 10 partici-
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Figure 2: Standard data collection application: Left, user 
draws a gesture as requested above, i.e.,“reversed-pi." Right, 
two buttons appear that allow user to save or delete and retry. 

pants were asked to perform 10 different gesture two times, 
and NTU RGB+D dataset [22], one of the largest gesture 
datasets, which contains over 56000 single- and multi-actor 
samples. 

Such collection procedures have some caveats. Most impor-
tantly, users tend to focus on the correct gesticulation itself, 
without paying much attention to the gesture’s context, or 
how that gesture can be interleaved with other interactions. 
Also, collected gestures tend to be pre-segmented, making 
them unusable in experiments that require continuous data. 
Another issue that can arise in such collection settings is 
user frustration and fatigue due to displeasure with particu-
lar gesticulations [26]. While working with public datasets, 
instances have been observed where users were confused by 
the directions given to them, resulting in wrong gesticulation 
and sample labeling. Most notable is an example of the UT-
Kinect dataset [37] where a participant is asked to perform 
a “carry" gesture, but they mistakenly performed a different 
gesture, leaving a mislabeled example in the dataset [15]. In 
this work, we are not concerned with data collection errors, 
but rather how the data collection application and protocol 
impact gesture variability. 

DATA COLLECTION APPLICATIONS 
We designed three data collection applications, one that repli-
cates common practice and two that employ gestures in a 
game environment. We further developed all applications 
with Unity version 2019.1.11f1, a popular game engine de-
signed for 2D, 3D, VR, and AR experiences. Each of these 
applications are described in this section. 

Standard Data Collection 
Our standard data collection application, shown in Figure 2, 
asks users to draw gestures that our software specifies one at 
a time. We horizontally center requests at the display’s top, 
and users may gesticulate anywhere on the display. After one 
produces a gesture sample, two buttons appear that allow one 
to save or delete their sample. If satisfied, one can save their 
result and continue onto the next request, or delete their sam-
ple and produce a new variant. Gesture requests are purely 
random, as we provide no guard against consecutive identical 
requests. With this design, data collection is relatively stress 
free and comfortable. We impose no time pressure, feedback, 
or expectations so that users remain in full control. 

Figure 3: Follow the Leader (FTL): Upper left, a leader 
(white) renders a random trajectory that the player (black) 
must replicate in realtime as closely as possible. At random 
intervals FTL makes a gesture request to which one must im-
mediately attend as the leader continues on without pause 
(upper right), and to which one must return upon gesture com-
pletion. The lower panels each show ten randomly selected 
leader trajectories to illustrate type and variety. 

Game: Follow the Leader (FTL) 
Our first game is named after and inspired by a popular chil-
dren’s game called Follow the Leader (FTL), in which par-
ticipants line up behind a leader whom all must follow and 
whose random actions they must exactly replicate. In a sim-
ilar way, as presented in Figure 3, we present the leader as a 
series of seemingly random trajectories on one’s display. A 
player must try to replicate precisely what they see, keeping 
pace with their leader in time and space. At random intervals, 
we further present a gesture request, whereby players must 
stop following, gesticulate anywhere on the screen, and re-
turn to following as quickly as possible. The intention of this 
design is to create a sense of urgency not present in standard 
data collection protocols. 

Leader trajectories are prerecorded samples produced by the 
developer using our standard data collection application de-
scribed above. All leader samples are intentionally arbitrary1, 
being a random collection of geometric shapes, words, and 
scribbles (see Figure 3 for some examples). During game 
play, FTL randomly draws a single leader sample and replays 
its trajectory at a rate matching its recorded speed. Once the 
sample is fully rendered, we repeat this process, continuously, 
until a predetermined number of gesture requests are made 
and satisfied. 

Design Considerations 
FTL is designed to be a middle ground between standard 
data collection and a fully featured video game like those de-
scribed in the Related Work section. We expect an increase in 
1We attend to the intentionally arbitrary nature of our design later in 
the discussion. 

Paper 290 Page 3



 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Figure 4: Sleepy Town: Left, player sketches a path that Leopold follows through the scene. Right, player draws a car gesture 
that causes an NPC to fall asleep as he crosses over its threshold. 

gesture production variability as a player must attend to mul-
tiple dynamic tasks. FTL is further motivated by our desire 
to minimize developer effort should one decide to use an FTL 
approach in their own data collection work. Specifically, our 
goal was to increase variability by leveraging machinery al-
ready present in most data collection tools such as to display, 
capture, and randomize gestures. To use FTL, one will first 
define a gesture dataset, render leader sequences in random 
order, ask participants to follow leader actions as closely as 
possible, periodically make gesture request that participants 
immediately perform, and continue as such until all training 
data is collected. 

Game: Sleepy Town 
Our second game, Sleepy Town, offers an entirely unique ex-
perience relative to FTL by introducing comparatively greater 
game play complexity. In this fantasy-based game, the local 
government has decreed that its citizens must adopt an Uber-
man sleep schedule2 so as to become a more productive town. 
One week after this law has gone into effect, Leopold hap-
pens across the city, where he finds that its citizens appear 
to be wandering aimlessly about without purpose. Further, 
in a state of sleep deprived delirium (because there could be 
no other reason), its citizens pursue and attack outsiders on 
sight. Luckily, Leopold is a magician who knows a variety of 
sleeping spells. 

In Figure 4, we present the player’s top-down view of a 
simple city scene along with an illustration of its two game 
play mechanics. First, to navigate through Sleepy Town, 
one sketches a path rendered in red that begins from within 
Leopold’s halo. He will immediately begin to run along the 
player’s sketched route until he reaches the end or until the 
player constructs a new route. As one approaches their dis-
play’s physical boundary, we automatically rotate the camera 
around their point of contact in a way that allows him or her 

2A polyphasic sleep schedule in which individuals nap for 20 min-
utes at equidistant intervals throughout the day, usually six times per 
day. This schedule is notoriously difficult to adopt. 

to continue sketching a continuous path; and when not rout-
ing, the camera automatically follows Leopold as he traverses 
his assigned route. When one instead sketches outside of his 
halo, our game transitions to gesture mode. Specifically, we 
project the player’s input into the environment, rendering blue 
spell strokes. Above each non-player character (NPC) is writ-
ten a gesture name—the spell that puts him or her to sleep. 
Once drawn, if an NPC walks over this gesture, he or she 
will immediately collapse into some much needed slumber. 
Like before, gesture assignments are randomized, and play-
ers continue to evade or put citizens to sleep until we collect 
a predetermined number of samples from each gesture class. 

Design Considerations 
In designing Sleepy Town, we were concerned with provid-
ing a realistic game play experience to ensure ecological va-
lidity. While a game can take on almost any form, a common 
design approach is to mimic elements found among success-
ful games [1]. In this regard, we provide a clear objective, 
visual feedback, interactive elements, risk, reward, and vari-
ability through navigation, gestures, and health pack pickups. 
Further, Sleepy Town adheres to the playability heuristics de-
scribed by Desurvive et al. [4] and Pinelle et al.’s usability 
principles [17]. For example, the camera is never obscured. 
Relevant game state information is always presented in the 
form of an overlay with health information. Enemy behavior 
and user movement are similarly consistent and were found 
to be fair by users. In this way, we ensure an ecologically 
valid game play experience. Further, Sleepy Town’s design 
is inspired by prior work [3, 27]. In our design, we ensure 
that gestures are also spatially relevant and require interaction 
with virtual objects. To illustrate, gesticulation requires that 
players align their gestures to intercept citizens along their 
trajectory. We believe this can influence shape, time, size, 
and sloppiness. And depending on the relationship between 
citizen, camera, and environment, the ability of a player to in-
tercept a citizen will vary. Although we did not collect player 
experience metrics, we anecdotally received unsolicited pos-
itive feedback and participant requests for us to publish our 
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game on an app store, which suggests that we provided a com-
pelling gameplay experience. 

PERFORMANCE MEASURES 
To understand gesture production differences between data 
collection applications, we employ a variety of performance 
measures: relative, global, and coverage. Each type offers a 
unique perspective on how users gesticulate within a given 
environment, which we discuss in this section. 

Relative Accuracy Measures: One set of twelve designed by 
Vatavu et al.[33] for stroke gestures are the so-called relative 
measures. Given a gesture set, one first selects a representa-
tive task axis, typically the distribution’s centroid. One then 
measures each remaining sample against this axis to under-
stand how gestures vary within the random sample relative to 
a canonical form. An example relative measure referred to as 
the shape error follows: 

n 

kpσ (i) − p̄ik, 
i=1 
∑ (1) 

1
ShE(p) = 

n 

where p is a stroke uniformly resampled to n points, p̄ is the 
similarly resampled task axis, σ is a permutation function that 
aligns points in p with points from p̄. In words, ShE mea-
sures the average difference between corresponding points. 
A brief description of each relative measure is given in Table 
1, though the associated mathematics are omitted (see [33] 
for more information). In addition to then ten listed relative 
measures, we also report their geometric mean (Mean Mea-
sure) as a summary of error and variance across all measures, 
enabling one to quickly see the aggregate effect between con-
ditions. 

One issue with the relative measures in their specified form is 
that they do not allow for a direct comparison between distri-
butions collected by unique protocols and/or hardware. For 
example, when one collects a distribution of samples with 
a large display compared to that of a smaller display, then 
the Euclidean distance-based shape error results will report 
a larger dispersion in the large display condition compare to 
that collected with the smaller display apparatus. For this rea-
son, we z-score normalize both position and time data for all 
samples residing within the same distribution. Specifically, 
we measure the bounding box size for all samples within 
a distribution and subsequently rescale all samples by the 
largest z-score normalized extent, so as to preserve aspect ra-
tio. This normalization step allows us to directly compare 
the intra-distribution dispersion of those measures reported 
in Table 1 when collected amongst different data collection 
devices and protocols. We refer to these as scaled relative 
measures.

Global Measures: In addition to those relative measures just 
discussed, we also collect and report on a variety of abso-
lute global measures. Namely, we examine the bounding box 
area, path length, gesture production time, and indicative an-
gle variance, which are classic measures commonly used in 
gesture production analysis [21]. In our context, bounding 
box area informs one about the size of gesticulations across 
protocols as does path length. Differences in size and length 

Name Abbr Description 
Shape Error 

Shape Variability 

ShE 

ShV 

Average difference between cor-
responding points 
Standard deviation of shape error 
differences 

Length Error 

Size Error 
Bending Error 

Bending Variability 

Time Error 

LE 

SzE 
BE 

BV 

TE 

Sum of differences between ges-
ture arc-lengths across corre-
sponding points 
Difference in bounding box sizes 
Average of differences between 
turning angle at corresponding 
points 
Standard deviation of turning 
angle difference between corre-
sponding points 
Difference in gesture production 
time 

Time Variability 

Speed Error 

Speed Variability 

Mean Measure 

TV 

VE 

VV 

MM 

Standard deviation of time dif-
ference between corresponding 
points 
Average difference in speed be-
tween corresponding points 
Standard difference between dif-
ferences in speed 
Geometric mean of above relative 
measures 

Table 1: Subset of the relative measure defined by Vatavu 
et al. [33] that we use in this work. The Mean Measure, 
however, is new in this work. 

force one to consider possible explanations for why users 
choose to vary their size with respect to the given task and
apparatus. Gesture production time provides insight into how 
hurriedly a population produces gestures under a given con-
dition, and variation in the indicate angle gives insight into 
orientation consistency under the same conditions. This lat-
ter measure is especially important given that a recent trend in 
recognizer research has been to drop rotation invariance [26, 
28, 30, 32, 34]. 

Coverage Measures: Both relative and global measures yield 
important information on dispersion, yet fail to provide in-
sight on form differences between distributions. For instance, 
although two unique random samples are identically self sim-
ilar according to a given relative measure, this does not guar-
antee that their shapes are similarly identical, which directly 
impacts a recognizer’s ability to match patterns. For this rea-
son, we also report coverage via the modified Hausdorff dis-
tance [5], defined as: 

H(A,B) = max(d (A,B) ,d (B, A)) (2) 
1

d(A,B) = ∑ min( f (a,b)) ,
| A | b∈B a∈A 

where A and B are independent gesture sets, and f is a dis-
similarity measure. In words, we calculate the average dis-
similarity of each sample in a first dataset to its nearest neigh-
bor in the second dataset, and we do this again in the opposite 
direction, which yields two averages. The maximum of these 
average dissimilarities then gives us a sense of how well the 
distributions cover each other. 
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A number of recognizers utilize Euclidean Distance in their 
pattern matching approach. For this reason, we employ the 
squared Euclidean Distance over normalized samples as our 
primary dissimilarity measure ( f in Equation 2). Similar to 
$1 [36], we resample, scale, and rotate all samples before 
making our measurement to ensure we are comparing differ-
ences in underlying form. 

USER STUDY 
We conducted an experiment to better understand differences 
in gesticulation between a standard data collection protocol 
and games using the applications described in our previous 
section. We designed our experiment to test the following 
hypotheses: 

Hypothesis 1 (H1): Gesture production variability is appli-
cation dependent. 

Hypothesis 2 (H2): Standard practice yields the least 
amount of gesture production variability. 

Hypothesis 3 (H3): Sleepy Town yields the most amount of 
gesture production variability. 

Subjects and Apparatus 
We recruited 18 participants (12 male and 6 female) from a 
local university, all were right handed, all had prior experi-
ence with touch-based electronic interfaces and 14 had prior 
experience with pen-based electronic interfaces. Further, the 
population’s mean age was 20.3 years old and ranged from 18 
to 28. The experiment duration ranged from 30 to 50 minutes, 
and each participant was compensated $10 for their time. For 
a pen-based interactive display we used a Wacom Cintiq Pro 
16 with display size of 15.6 inches (37.62 cm) and resolution 
of 3840x2160 pixels (UHD). We used the stylus (6 inch, 15.5 
cm) included with the Wacom device for data collection. 

FTL: Implementation 
To facilitate offline processing, we record which leader or 
gesture request command is displayed at each moment in 
time. When FTL makes a gesture request, we inform the 
participant, and once the associated gesture is complete, we 
press a key that logs the request as complete. Afterward, we 
use automation implementing Penny Pincher [24] to classify 
each stroke recorded during the session. We further visually 
confirm all results and manually correct any errors. 

Sleepy Town: Implementation 
Actions are fast and sporadic in this game environment, so it 
is not possible to classify strokes in real-time as users play 
our game. Instead, using key button presses, we count when 
we believe players produce certain gestures. Once we collect 
a sufficient sample count for each gesture based on investi-
gator key-press feedback, the game terminates and all strokes 
are saved to disk. In a post-processing step, all strokes are 
classified and errors are manually corrected. 

Procedure 
We presented each participant with a consent form that ex-
plained our experimental procedure and informed him or 

her of their rights. We then gave each individual a pre-
questionnaire so as to collect demographic information, af-
ter which we explained our research. Participants were next 
introduced to the ten gesture classes shown in Figure 1 and 
allowed to practice them on paper until they were satisfied 
with their performance, though a reference sheet was kept 
nearby throughout the entire session. Once comfortable, par-
ticipants used each of the three data collection applications in 
a counterbalanced order. For each application, we first intro-
duced its mechanics to the participant and then allowed him 
or her to practice until they were confident. Thereafter, we 
recorded at least six samples of each gesture class. Finally, 
we asked participants to fill out the NASA Task Load Index 
(TLX) questionnaire upon completion of each data collection 
task so as to assess subjective workload. 

We chose to use the ten gestures shown in Figure 1 because 
of their prevalence throughout the custom gesture recogni-
tion literature. Although there were many to choose from, 
these ten also vary in familiarity and difficulty, and have 
good separability, which facilitates the use of our offline post-
processing tools. Our choice to limit the gesture class count 
to ten was driven only by logistics. To produce a minimum of 
six samples per class over three conditions took the longest 
participants approximately one hour. We feared that more 
samples or classes would lead to fatigue or effortless gesticu-
lation. 

Design and Analysis 
We chose a within-subject design for our experiment in or-
der to compare writer-dependent gesture production varia-
tions across each of the three data collection applications. In 
this way, we had one independent variable, application, with 
three levels: Standard, FTL, and Sleepy Town. Our depen-
dent variables are the global, relative, and distribution cover-
age measures discussed in the previous section. 

For each participant, per gesture, we first computed each mea-
sure. We then averaged together the individual gesture class 
results per participant, which provided us with eighteen re-
sponses per condition. We thereafter used Friedman omnibus 
testing to detect differences between treatments, and exact 
Wilcoxon signed-rank testing for post-hoc analysis. Finally, 
we used the Holm–Bonferroni step down procedure to control 
family-wise error rates [9]. 

RESULTS 

Relative Measures 
Relative measure results are shown in Figure 5, and Friedman 
tests showing significant differences across all conditions for 
all metrics are shown in Table 2. Post-hoc analysis of the rel-
ative measures provide additional insight into the differences 
between different applications and their distributions, where 
the pairwise comparison results are presented in Table 3. 

We first note that the Shape Error and Shape Variability mea-
sures between all applications are significantly different, in-
creasing from standard practice to FTL and again from FTL 
to Sleepy Town. This result indicates that the position of cor-
responding points in a normalized space after spatial resam-
pling are less varied under standard data collection practices. 
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Figure 5: Collection of relative metrics. The top row, from left to right, includes Shape Error, Shape Variability, Length Error, 
Bending Error, and Bending Variabilility. The bottom row contains Size Error, Time Error, Time Variability, Speed Error and 
Speed Variability. 

Name Test Statistic and Significance 

Shape Error χ2(2) = 25.33, p < 0.00001 
Shape Variability χ2(2) = 30.33, p < 0.00001 
Length Error χ2(2) = 14.88, p < 0.001 
Size Error χ2(2) = 10.11, p < 0.01 
Bending Error χ2(2) = 23.11, p < 0.00001 
Bending Variability χ2(2) = 22.33, p < 0.0001 
Time Error χ2(2) = 16.78, p < 0.001 
Time Variability χ2(2) = 25.44, p < 0.00001 
Speed Error χ2(2) = 19.44, p < 0.05 
Speed Variability χ2(2) = 23.18, p < 0.00001 
Mean Measure χ2(2) = 28.78, p < 0.00001 

Table 2: Friedman test results for relative measures. All re-
sults were significant. 

We see similar trends in Bending Error and Bending Variabil-
ity, which shows that the angles between corresponding point 
triplets yield increased curvature differences with increased 
game complexity. Size and Length Error are not significantly 
different between standard practice and FTL, but both differ 
from Sleepy Town, where we observe less consistency. That 
is the relative variation in size and temporal alignment be-
tween points is greatest in Sleepy Town. We see a similiar 
result for Speed Error and Variability in that Sleepy Town ex-
hibits the most error and variability. Finally, the Mean mea-
sure (Figure 6 left) clearly echos the individual relative mea-
sure results—standard practice gesture productions are most 
consistent and Sleepy Town least, leaving FTL in the middle. 

Global Measures 
Global measure comparisons results are shown in Figure 6. 
Results of our Friedman tests showed significant differences 
across conditions for Area (χ2(2) = 20.11, p < 0.05), Angle 
Variance (χ2(2) = 25, p < 0.05), Length (χ2(2) = 21.78, p < 
0.05), and Duration (χ2(2) = 27.44, p < 0.05) only. Post-

hoc analysis provided further insight about differences be-
tween the conditions. For Area, there was a difference be-
tween standard practice and Sleepy Town (Z = 3.79, p < 
0.001,r = 0.63), as well as FTL and Sleepy Town (Z = 
4.08, p < 0.0001,r = 0.68). For Angle Variance, there was a 
difference between standard practice and Sleepy Town (Z = 
−3.87, p < 0.0001,r = 0.64), as well as FTL and Sleepy 
Town (Z = −2.95, p < 0.01,r = 0.49) and FTL and standard 
practice (Z = −2.41, p < 0.05,r = 0.40). Finally, Duration 
showed a difference between standard practice and Sleepy 
Town (Z = 4.23, p < 0.0001,r = 0.71), as well as FTL and 
Sleepy Town (Z = 2.12, p < 0.05,r = 0.35) and FTL and 
standard practice (Z = 4.23, p < 0.0001,r = 0.71). Note that 
although FTL and Sleepy Town measure lower in Area and 
Duration, their relative measures show greater error and vari-
ability. 

Coverage Measures 
Coverage measure comparison results are shown in Fig-
ure 7. Our Friedman tests showed significance both be-
tween conditions (χ2(2) = 32.44, p < 0.05), and within 
conditions (χ2(2) = 36, p < 0.05) for our coverage metric 
based on modified Hausdorff distance. Post-hoc analysis 
shows significant differences between each pairwise compar-
ison (Standard-FTL, Standard-Sleepy Town, and FTL-Sleepy 
Town). For intra-condition distances, all pairwise combina-
tions were equally significant (Z = −4.23, p < 0.0001,r = 
0.71). For inter-condition distances, Standard-FTL vs FTL-
Sleepy Town and Standard-FTL vs Standard-Sleepy Town 
were equally significant (Z = −4.23, p < 0.0001,r = 0.71), 
while Standard-Sleepy Town vs FTL-Sleepy Town was 
slightly less significant (Z = 3.96, p < 0.0001,r = 0.66). 
These results further support our prior findings that the dis-
tribution of samples generated by an individual application 
do not necessarily cover the space of other applications, and 
standard practice produces the least variable results. 
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Name Standard-FTL Standard-Sleepy Town FTL-Sleepy Town 
Shape Error 
Shape Variability 
Length Error 
Size Error 
Bending Error 
Bending Variability 
Time Error 
Time Variability 
Speed Error 
Speed Variability 
Mean Measure 

Z = −3.79, p < 0.001,r = 0.63 
Z = −3.96, p < 0.0001,r = 0.66 
Z = −1.29, p = 0.20 
Z = 1.16, p = 0.25 
Z = −2.33, p < 0.05, r = 0.39 
Z = −2.17, p < 0.05, r = 0.36 
Z = 0.212, p = 0.83 
Z = −2.61, p < 0.001,r = 0.43 
Z = −1.15, p = 0.25 
Z = 0.45, p = 0.65 
Z = −2.98, p < 0.01, r = 0.50 

Z = −4.08, p < 0.0001,r = 0.68 
Z = −3.96, p < 0.0001,r = 0.66 
Z = −3.37, p < 0.001, r = 0.56 
Z = −3.16, p < 0.01,r = 0.53 
Z = −4.08, p < 0.0001,r = 0.68 
Z = −3.16, p < 0.01,r = 0.53 
Z = −2.89, p < 0.01,r = 0.48 
Z = −4.16, p < 0.0001,r = 0.69 
Z = −4.08, p < 0.0001,r = 0.68 
Z = −3.30, p < 0.001, r = 0.55 
Z = −4.23, p < 0.0001,r = 0.71 

Z = −3.79, p < 0.001,r = 0.63 
Z = −4.23, p < 0.0001, r = 0.66 
Z = −3.01, p < 0.01,r = 0.50 
Z = −2.65, p < 0.01,r = 0.44 
Z = −4.08, p < 0.0001, r = 0.68 
Z = −3.16, p < 0.01,r = 0.53 
Z = −2.76, p < 0.01,r = 0.46 
Z = −4.23, p < 0.0001, r = 0.71 
Z = −3.32, p < 0.001,r = 0.55 
Z = −3.20, p < 0.01,r = 0.53 
Z = −4.16, p < 0.0001, r = 0.69 
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Table 3: Pairwise Wilcoxon signed rank test results for relative measures. 

Figure 6: Mean Measure (geometric mean) of all relative measures, followed by the global measures that are Indicative Angle, 
Indicative Angle Variance, Gesture Area, and Duration from left to right. 

Figure 7: Results of comparisons betweeen gesture form 
from different conditions using Hausdorff Distance. 

Perceived Workload 
To analyze perceived workload, we ran a Friedman test on 
the raw NASA TLX data collected from the users after com-
pleting each task [7]. The Standard collection tool showed 
lower workload (M = 31.22, SD = 20.0) than both Sleepy 
Town (M = 48.44,SD = 23.7) and FTL (M = 80,SD = 25.0). 
There was a significant difference between the three condi-
tions (χ2(2) = 23.07, p < 0.05). Our post-hoc analysis found 
that there were differences between Standard collection tool 
and FTL (p < .0001), Sleepy Town and FTL (p < .001), and 
Standard collection tool and Sleepy Town (p < .0001). The 
increased task load introduced by FTL did not introduce ad-
ditional gesture variability, as seen in the global and relative 
measures. 

DISCUSSION 
From our experiment, it is clear that data collection protocols 
influence gesture form, and by introducing even minor game 

play mechanics to a protocol, we can expect a significant in-
crease in variability. Specifically, by analyzing global mea-
sures, we observe differences in production time, where both 
game conditions elicited faster responses relative to standard 
practice. Since speed has been correlated with recognition 
accuracy [33], and we find that participants gesticulate with 
greater haste under our alternative conditions, future data col-
lection protocols should work to elicit speed variability. 

Second, we found a significant difference in size and orienta-
tion variability between Sleepy Town and the remaining con-
ditions. Interestingly, participants were as likely to draw large 
gestures when playing FTL as they were when using standard 
practice. However, in Sleepy Town, players were forced to in-
teract with dynamic content in a timely manner. We believe 
that these targeted interactions had an influence on gesture 
size. For a similar reason, we visually observed that some 
players oriented their gestures toward Sleepy Town citizens 
so as to intercept individuals along their apparent trajectories 
and to put spells on specific characters. Such orientation vari-
ability has an important effect on recognizer accuracy with 
respect to alignment. In recent years, custom gesture recog-
nizers have dropped support for rotation invariance [26, 28, 
30, 32, 34]; however, with this new data in hand, practitioners 
might consider again adopting rotation invariance, especially 
for circumstances that involve interactions with dynamic con-
tent. Intuitively, our findings also suggest that future data col-
lection protocols should work to elicit variability in both ori-
entation and size. 

Relative accuracy measures also reveal a number of insights. 
Across all twelve measures analyzed, Sleepy Town elicited 
significantly higher variation compared to FTL and standard 
practice. Of particular interest are Shape Error and Variabil-
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ity, because like speed, these measures have been correlated 
with recognizer accuracy [33], where lower values lead to bet-
ter performance. Specifically, these measures inform us about 
the average deviation and variation between corresponding 
points of a given sample against the distribution’s centroid, 
both of which are significantly higher in our game environ-
ments. In other words, we find that players are less consistent 
in their productions when reacting to dynamic content. Be-
cause standard practice does require such interactions, data 
captured with such tools are unlikely to exercise recognizers 
to the same extent. Bending error and variability tell a similar 
story. 

Finally, coverage measures reinforce what we already learned 
from relative accuracy measure analysis—-standard practice 
yields a more consistent random sample. We find that the 
distance between nearest neighbors within the same distribu-
tion are furthest apart in the game environments, with Sleepy 
Town being greatest by a considerable margin. Consequently, 
standard practice data is unable to provide adequate coverage 
for either game environment. This finding is consistent with 
prior work, where researchers found accuracy drops in video 
games relative to tests conducted with training data [3, 27, 
28]. 

Findings across all measures confirm our hypothesis that ges-
ture production variability is application dependent, as across 
each condition, we observe unique variations in size, speed, 
orientation, and form. We further confirmed our second hy-
pothesis that standard practice yields the most consistent sam-
pling. And finally, we also confirmed that Sleepy Town, being 
the most complex game with respect to interaction style, elic-
its the most variable responses. Based on these findings, we 
recommend that user interface designs and pattern recogni-
tion researchers validate their work with data collected from 
within rather than outside of their target environment, or 
adopt new data collection protocols. Given that standard 
practice does yield sufficient variability, results reported with 
such data represent optimistic upper bounds on performance 
rather than provide clear expectations. 

About Follow the Leader 
We designed FTL as a data collection application for low 
cost implementation effort in that many design choices were 
driven by practical logistical considerations. Consider that a 
typical standard application already has the ability to collect 
and render gesture data. Using this functionality, a practi-
tioner can easily collect leader samples that their system re-
plays while it displays text commands and collects new input. 
Subsequently, using any off-the-shelf recognizer such as $Q 
[34], one can post process their data to classify new input us-
ing designer made templates, after which one just manually 
corrects any minor missclassification error. Inline with sim-
plicity, FTL does not time, score, nor provide any user perfor-
mance feedback, though one could if they so chose. Despite 
this apparent feature scarcity, FTL is still able to elicit highly 
variable responses relative to standard practice, and for these 
reasons, we believe FTL is a good starting point for future 
data collection efforts as we begin to move toward more eco-
logically valid protocols. 

Limitations and Future Directions 
In this work we were able to show that differences in data 
collection protocols lead to differences in gesture produc-
tion variability. However, we did not identify which spe-
cific factors cause variability. For instance, Sleepy Town ges-
tures were on average significantly smaller than those pro-
duced within the standard data collection and FTL applica-
tions. Does size impact variability? We also saw differences 
in speed, orientation, and time. Do these differences result 
from how players interact with objects in the virtual envi-
ronment? To what extent does cognitive load impact gesture 
form? We intend to explore these factors in greater detail. 

We further focused on unistroke gestures of varying complex-
ity to facilitate user study duration, but we intend to follow up 
with multistroke as well as hand and full body gesture analy-
sis. We also intend to explore additional FTL game mechan-
ics that may yield even more variability, including orientation 
and timed response requirements. Last, we also believe FTL 
will be especially useful for high activity continuous data ac-
quisition, as players are forced to maneuver between gesture 
and non-gesture interactions. In this way, FTL will capture 
challenging datasets that researchers and practitioners can use 
to test gesture segmentation and recognition. 

CONCLUSION 
We have presented results from a user study demonstrating 
that standard data collection protocols do not capture the true 
variability of gesticulation within a game environment. This 
result holds for even our simplest game, Follow the Leader 
(FTL), which yielded variation significantly different from 
that of standard practice. Our second game, Sleepy Town, 
generated even greater variability, which was again signifi-
cantly different from both. Differences between these distri-
butions were validated using seventeen global, relative, and 
coverage measures. Our findings motivate the need for re-
searchers and designers to move away from standard prac-
tice, and for the community to develop new ecologically valid 
data collection protocols. We believe that FTL is a good first 
step solution, as FTL requires little effort to implement, be-
ing built on tools already present in standard data collection 
applications, and that elicits greater variability. 

ACKNOWLEDGMENTS 
This work is supported in part by NSF Award IIS-1638060 
and Army RDECOM Award W911QX13C0052. We also 
thank the anonymous reviewers for their insightful feedback. 
We are further grateful to the Interactive Systems and User 
Experience lab at UCF for their support. 

REFERENCES 
[1] Luke Ahearn. 2000. Designing 3D games that sell! 

Charles River Media, Inc. 

[2] Xiang Cao and Shumin Zhai. 2007. Modeling Human 
Performance of Pen Stroke Gestures. In CHI 
Conference. IBM Almaden Research Center and 
University of Toronto, 1495–1504. 

[3] Salman Cheema and Joseph J LaViola. 2011. Wizard of 
Wii: toward understanding player experience in first 

Paper 290 Page 9



 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

person games with 3D gestures. In Proceedings of the 
6th International Conference on Foundations of Digital 
Games. ACM, 265–267. 

[4] Heather Desurvire, Martin Caplan, and Jozsef A Toth. 
2004. Using heuristics to evaluate the playability of 
games. In CHI’04 extended abstracts on Human factors 
in computing systems. ACM, 1509–1512. 

[5] M-P Dubuisson and Anil K Jain. 1994. A modified 
Hausdorff distance for object matching. In Proceedings 
of 12th international conference on pattern recognition, 
Vol. 1. IEEE, 566–568. 

[6] Chris Ellis, Syed Zain Masood, Marshall F Tappen, 
Joseph J Laviola Jr., and Rahul Sukthankar. 2013. 
Exploring the Trade-off Between Accuracy and 
Observational Latency in Action Recognition. 
International Journal of Computer Vision 101, 3 (feb 
2013), 420–436. 

[7] Sandra G Hart. 2006. NASA-task load index 
(NASA-TLX); 20 years later. In Proceedings of the 
human factors and ergonomics society annual meeting, 
Vol. 50. Sage publications Sage CA: Los Angeles, CA, 
904–908. 

[8] Javier Hernandez-Ortega, Aythami Morales, Julian 
Fierrez, and Alajandro Acien. 2017. Predicting Age 
Groups from Touch Patterns based on Neuromotor 
Models. In International Conference of Pattern 
Recognition Systems. BiDA Lab, 1–6. 

[9] Sture Holm. 1979. A simple sequentially rejective 
multiple test procedure. Scandinavian journal of 
statistics (1979), 65–70. 

[10] Luis A Leiva, Daniel Martín-Albo, and Réjean 
Plamondon. 2015. Gestures À Go Go: Authoring 
Synthetic Human-Like Stroke Gestures Using the 
Kinematic Theory of Rapid Movements. ACM Trans. 
Intell. Syst. Technol. 7, 2 (nov 2015), 15:1—-15:29. 

[11] Luis A Leiva, Daniel Martín-Albo, and Radu-Daniel 
Vatavu. 2017. Synthesizing stroke gestures across user 
populations: A case for users with visual impairments. 
In Proceedings of the 2017 CHI Conference on Human 
Factors in Computing Systems. ACM, 4182–4193. 

[12] Laurence Likforman-Sulem, Anna Esposito, Marcos 
Faundez-Zanuy, Stéphan Clémençon, and Gennaro 
Cordasco. 2017. EMOTHAW: A Novel Database for 
Emotional State Recognition From Handwriting and 
Drawing. In IEEE TRANSACTIONS ON 
HUMAN-MACHINE SYSTEMS, VOL. 47. IEEE, 
273–284. 

[13] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and 
Venu Vasudevan. 2009. uWave: Accelerometer-based 
personalized gesture recognition and its applications. 
Pervasive and Mobile Computing 5, 6 (2009), 657–675. 

[14] Gil Luria and Sara Rosenblum. 2010. Comparing the 
Handwriting Behaviours of True and False Writing 

with Computerized Handwriting Measures. In Applied
Cognitive Psychology, issue 24. Department of Human 
Services, Haifa University, 1115–1128. 

[15] Mehran Maghoumi and Joseph J LaViola Jr. 2018. 
DeepGRU: Deep Gesture Recognition Utility. CoRR 
abs/1810.1 (2018). 

[16] Daniel Martín-Albo, Réjean Plamondon, and Enrique 
Vidal. 2014. Training of on-line handwriting text 
recognizers with synthetic text generated using the 
kinematic theory of rapid human movements. In 2014 
14th International Conference on Frontiers in 
Handwriting Recognition. IEEE, 543–548. 

[17] David Pinelle, Nelson Wong, and Tadeusz Stach. 2008. 
Heuristic evaluation for games: usability principles for 
video game design. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems. 
ACM, 1453–1462. 

[18] Réjean Plamondon. 1995a. A kinematic theory of rapid 
human movements. Part I: Movement representation 
and control. Biological Cybernetics 72, 4 (mar 1995), 
309–320. 

[19] Réjean Plamondon. 1995b. A kinematic theory of rapid 
human movements. Part II. Movement time and 
control. Biological cybernetics 72 4 (1995), 309–20. 

[20] Réjean Plamondon and Moussa Djioua. 2006. A 
multi-level representation paradigm for handwriting 
stroke generation. Human movement science 25, 4-5 
(2006), 586–607. 

[21] Dean Rubine. 1991. Specifying Gestures by Example. 
SIGGRAPH Computer Graphics 25, 4 (jul 1991), 
329–337. 

[22] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang 
Wang. 2016. NTU RGB+D: A Large Scale Dataset for 
3D Human Activity Analysis. In The IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR). 

[23] Steven W Smith. 1997. The scientist and engineer’s 
guide to digital signal processing. California Technical 
Pub. San Diego. 

[24] Eugene M Taranta II and Joseph J LaViola Jr. 2015. 
Penny Pincher: A Blazing Fast, Highly Accurate 
$-family Recognizer. In Proceedings of the 41st 
Graphics Interface Conference (GI ’15), Vol. 
2015-June. Canadian Information Processing Society, 
Toronto, Ont., Canada, Canada, 195–202. 

[25] Eugene M Taranta II, Mehran Maghoumi, Corey R 
Pittman, and Joseph J LaViola Jr. 2016. A rapid 
prototyping approach to synthetic data generation for 
improved 2D gesture recognition. In Proceedings of the 
29th Annual Symposium on User Interface Software 
and Technology (UIST ’16). ACM, ACM, New York, 
NY, USA, 873–885. 

Paper 290 Page 10



 CHI 2020 Paper CHI 2020, April 25–30, 2020, Honolulu, HI, USA

[26] Eugene M Taranta II, Amirreza Samiei, Mehran 
Maghoumi, Pooya Khaloo, Corey R Pittman, and 
Joseph J LaViola Jr. 2017. Jackknife: A Reliable 
Recognizer with Few Samples and Many Modalities. In 
Proceedings of the 2017 CHI Conference on Human 
Factors in Computing Systems (CHI ’17). ACM, New 
York, NY, USA, 5850–5861. 

[27] Eugene M Taranta II, Thaddeus K Simons, Rahul 
Sukthankar, and Joseph J Laviola Jr. 2015. Exploring 
the Benefits of Context in 3D Gesture Recognition for 
Game-Based Virtual Environments. ACM Transactions 
on Interactive Intelligent Systems (TiiS) 5, 1 (2015), 1. 

[28] Eugene M Taranta II, Andrés N Vargas, and Joseph J 
LaViola Jr. 2016. Streamlined and accurate gesture 
recognition with Penny Pincher. Computers & 
Graphics 55 (2016), 130–142. 

[29] Jean Vanderdonckt, Paolo Roselli, and Jorge Luis 
Pérez-Medina. 2018. ! FTL, an Articulation-Invariant 
Stroke Gesture Recognizer with Controllable Position, 
Scale, and Rotation Invariances. In Proceedings of the 
2018 on International Conference on Multimodal 
Interaction. ACM, 125–134. 

[30] Radu-Daniel Vatavu. 2017. Improving Gesture 
Recognition Accuracy on Touch Screens for Users with 
Low Vision. In Proceedings of the 2017 CHI 
Conference on Human Factors in Computing Systems 
(CHI ’17). ACM, New York, NY, USA, 4667–4679. 

[31] Radu-Daniel Vatavu, Lisa Anthony, and Quincy 
Brown. 2015. Child or adult? Inferring Smartphone 
users’ age group from touch measurements alone. In 
IFIP Conference on Human-Computer Interaction. 
Springer, 1–9. 

[32] Radu-Daniel Vatavu, Lisa Anthony, and Jacob O 
Wobbrock. 2012. Gestures As Point Clouds: A $P 

Recognizer for User Interface Prototypes. In 
Proceedings of the 14th ACM International Conference 
on Multimodal Interaction (ICMI ’12). ACM, New 
York, NY, USA, 273–280. 

[33] Radu-Daniel Vatavu, Lisa Anthony, and Jacob O 
Wobbrock. 2013. Relative Accuracy Measures for 
Stroke Gestures. In Proceedings of the 15th ACM on 
International conference on multimodal interaction 
(ICMI ’13). ACM, ACM, New York, NY, USA, 
279–286. 

[34] Radu-Daniel Vatavu, Lisa Anthony, and Jacob O 
Wobbrock. 2018. $ Q: a super-quick, 
articulation-invariant stroke-gesture recognizer for 
low-resource devices. In Proceedings of the 20th 
International Conference on Human-Computer 
Interaction with Mobile Devices and Services. ACM, 
23. 

[35] Radu-Daniel Vatavu, Daniel Vogel, Géry Casiez, and 
Laurent Grisoni. 2011. Estimating the Perceived 
Difficulty of Pen Gestures. In Proceedings of the 13th 
IFIP TC 13 International Conference on 
Human-computer Interaction - Volume Part II 
(INTERACT’11). Springer-Verlag, Berlin, Heidelberg, 
89–106. 

[36] Jacob O Wobbrock, Andrew D Wilson, and Yang Li. 
2007. Gestures Without Libraries, Toolkits or Training: 
A $1 Recognizer for User Interface Prototypes. In 
Proceedings of the 20th Annual ACM Symposium on 
User Interface Software and Technology (UIST ’07). 
ACM, New York, NY, USA, 159–168. 

[37] L. Xia, C.C. Chen, and JK Aggarwal. 2012. View 
invariant human action recognition using histograms of 
3D joints. In Computer Vision and Pattern Recognition 
Workshops (CVPRW), 2012 IEEE Computer Society 
Conference on. IEEE, 20–27. 

Paper 290 Page 11


	Introduction
	Related Work
	Variability In Human Motion
	Data Collection

	Data Collection Applications
	Standard Data Collection
	Game: Follow the Leader (FTL)
	Design Considerations

	Game: Sleepy Town
	Design Considerations


	Performance Measures
	User Study
	Subjects and Apparatus
	FTL: Implementation
	Sleepy Town: Implementation

	Procedure
	Design and Analysis

	Results
	Relative Measures
	Global Measures
	Coverage Measures
	Perceived Workload

	Discussion
	About Follow the Leader
	Limitations and Future Directions

	Conclusion
	Acknowledgments
	References 



