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ABSTRACT
Synthetic data generation to improve classification performance
(data augmentation) is a well-studied problem. Recently, genera-
tive adversarial networks (GAN) have shown superior image data
augmentation performance, but their suitability in gesture synthe-
sis has received inadequate attention. Further, GANs prohibitively
require simultaneous generator and discriminator network train-
ing. We tackle both issues in this work. We first discuss a novel,
device-agnostic GAN model for gesture synthesis called DeepGAN.
Thereafter, we formulate DeepNAG by introducing a new differen-
tiable loss function based on dynamic time warping and the average
Hausdorff distance, which allows us to train DeepGAN’s generator
without requiring a discriminator. Through evaluations, we com-
pare the utility of DeepGAN and DeepNAG against two alternative
techniques for training five recognizers using data augmentation
over six datasets. We further investigate the perceived quality of
synthesized samples via an Amazon Mechanical Turk user study
based on the HYPE∞ benchmark. We find that DeepNAG outper-
forms DeepGAN in accuracy, training time (up to 17× faster), and
realism, thereby opening the door to a new line of research in gener-
ator network design and training for gesture synthesis. Our source
code is available at https://www.deepnag.com.

CCS CONCEPTS
• Human-centered computing → Gestural input; • Comput-
ing methodologies → Neural networks.
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1 INTRODUCTION
Recently we observe that system designers are integrating gestures
into almost every product with a user interface, igniting the need
for accurate gesture recognizers [28, 38]. As these recognizers get
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Figure 1: Our proposed model for gesture generation. Deep-
GAN consists of the discriminator and generator networks,
whereas DeepNAG only consists of the generator network.
The generator takes a class-conditioned random noise vec-
tor as the input and produces a gesture of the specified class.
The discriminator (critic) takes the raw gesture points as the
input and produces a set of features 𝑦𝑖 used in the computa-
tion of the Wasserstein loss [14].

more sophisticated and accurate, so does their need for more data.
While the size of publicly available datasets continues to grow,
obtaining more task-specific data is not always easy which high-
lights the importance of synthetic data generation. Among such
methods, generative adversarial networks (GAN)[12] have shown
great promise in various problem domains [10, 32, 48], including
handwriting and gesture generation [40, 50]. Typically, these net-
works consist of a generator and a discriminator. The discriminator
aims to determine if a given example is real or fake, whereas the
generator aims to fool the discriminator into confusing fake exam-
ples with the real ones. To our knowledge, such models have not
received much attention towards modality-agnostic gesture gen-
eration wherein gestures are represented by a sequence of 2D or
3D spatio-temporal features typically produced by touch interfaces,
Kinect or similar input devices. Additionally, GANs require the
concurrent training of two networks, which makes the training
procedure long and challenging.

https://www.deepnag.com
https://doi.org/10.1145/3397481.3450675
https://doi.org/10.1145/3397481.3450675
https://doi.org/10.1145/3397481.3450675
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This work focuses on modality-agnostic gesture generation and
aims to address the challenges involved with training GANs. We
start by discussing DeepGAN, our novel GAN approach for dynamic
gesture generation, through which our deep recurrent gesture gen-
erator network is born. We thereafter discuss our unique solution
for alleviating the difficulties associated with training GANs. Specif-
ically, we formulate a novel and intuitive loss function for training
our gesture generator. Our loss function, which is based on the
dynamic time warping (DTW) algorithm [36], completely replaces
DeepGAN’s discriminator network. This, transforms the signifi-
cantly complex adversarial training procedure of a GAN to the
much simpler non-adversarial training problem: train the gener-
ator by minimizing a loss function that directly maps the quality
of the generated examples to their similarity to the real examples.
We call this approach DeepNAG (see Figure 1). We evaluate both
methods by using their generated gestures in data augmentation
for improved gesture recognition across a variety of datasets of
different sizes and modalities, as well as different gesture recogniz-
ers. We additionally conduct a user study to evaluate the human’s
perception of the realism of our generated results. Such evaluations,
which have recently become common practice in the literature of
generative modeling [22, 51], provide insight into the visual quality
of generated samples.
Contributions. Our main contributions are (1) a novel recurrent
GAN model for gesture generation that works across a variety of
datasets and modalities, (2) a novel and intuitive loss function that
completely replaces the discriminator of our GAN model, which
not only simplifies and significantly speeds up the training process,
but also yields a generator that produces high quality examples, (3)
an evaluation of the improvements in gesture recognition accuracy
when our generator is used for data augmentation.

2 RELATEDWORK
Synthetic data generation is an effective approach in addressing data
shortage, which in turn can improve recognition performance [11,
21, 42, 44]. Some data generation methods rely on perturbing exist-
ing samples to generate new ones. Taranta et al. [42] introduced
GPSR which works by selecting random points along a given ges-
ture’s trajectory and scaling the between-point distances to create
realistic gesture variations. Other perturbation models include the
use of Perlin-noise [8] or the Sigma-Lognormal model [23, 24, 31].
These works differ from ours in that we do not rely on inputting
existing gestures to produce new ones. Rather, our model generates
new samples from random noise.

Generative models often involve the use of deep networks. One
popular approach that predates GANs is language modeling, a prob-
abilistic technique for sequence prediction which works well for
handwriting generation [13]. More recently, GANs have gained
popularity for such tasks [10]. Relevant examples include Gesture-
GAN [40] a model for hand gesture-to-gesture translation. Given
an image of a hand gesture and a target skeleton pose, GestureGAN
produces a new hand image holding the target gesture. Yang et
al. [47] presented a pose-guided human video generation method
in which videos of a person performing a desired action are gen-
erated. Zhang’s et al. [50] proposed a recurrent GAN for Chinese
character generation which generates the temporal pen movements.

The problem domain of these works is different from ours. We focus
on modality agnostic gesture generation to produce hand, full-body
or 2D pen gestures. Our model learns the representation of a given
gesture and produces new gestures in that same representation.
Also, our generator can be trained without a discriminator, which
sets us apart from the work of Zhang et al. [50].

Training generative models without a discriminator has also
been explored in the literature. Yu et al. [48] and Guo et al. [15]
proposed generating text sequences using reinforcement learning
techniques. Lin et al. [27] presented the use of a ranking mechanism
instead of a discriminator, and Li et al. [26] introduced an adver-
sarial optimization procedure to train a text generator. All of these
work focus on generating sequences of discrete tokens (e.g. text),
whereas our goal is to generate real-valued and continuous multi-
dimensional gesture sequences, which is highly challenging as data
can take arbitrary values. Lastly, our loss formulation is different
from [26] in that our formulation is inherently non-adversarial.

3 GESTURE GENERATIONWITH DEEP
RECURRENT NETWORKS

In this section we present our proposed deep learning approaches
for gesture synthesis. We first discuss our initial GAN approach
from which the DeepNAG generator is born. We then describe the
intuition behind our loss function, followed by its formal definition.

3.1 Notations and Problem Definition
In this work, we represent gestures as a temporal sequence of
input device samples (e.g. time-series of 3D joint positions or 2D
touch coordinates), thus our data is spatio-temporal. At time step
𝑡 , the gesture data is the column vector 𝑥𝑡 ∈ R𝑁 , where 𝑁 is the
dimensionality of the feature vector. Thus, the entire temporal
sequence of a single gesture sample is the matrix x ∈ R𝑁×𝐿 , where
𝐿 is the length of the sequence in time steps. For simplicity, and
as typical in most gesture recognition work [41, 43], we spatially
resample all gesture samples to the same length 𝐿1 as described
in [45]. We denote the vector trajectory path of a gesture x with
®x = {

−−−−−−−−→
(𝑥𝑖 − 𝑥𝑖−1) , ∀𝑥𝑖>0 ∈ x}. Lastly, we use |𝐴| to denote the

cardinality of a point set 𝐴, thus |x| = 𝐿 and |®x| = 𝐿 − 1.
We define gesture generation as producing synthetic examples

x′ = {𝑥 ′0, 𝑥
′
1, ..., 𝑥

′
𝐿−1} over a dataset of gestures D such these

samples mirror data-specific properties of the samples in D, as
if these examples were seemingly sampled from D. Formally, if 𝑝D
is dataset’s distribution such that x ∈ D =⇒ x ∼ 𝑝D, our goal is
to synthesize x′ where x′ ∉ D but x′ ∼ 𝑝D. We aim to achieve this
using a deep recurrent network 𝐺 which maps a class-conditioned
latent vector z𝑐 to a synthetic example x′ = 𝐺 (z𝑐 ;𝜃𝐺 ), where 𝜃𝐺
are the trainable parameters of 𝐺 . Henceforth, we use 𝐺𝜃 (z𝑐 ) in
place of 𝐺 (z𝑐 ;𝜃𝐺 ), and use L to denote an objective function to
minimize (a training loss function).

3.2 Gesture Generation with GANs
Our initial approach for gesture generation uses the well-known
GAN training setting comprised of a generator and a discriminator.

1We use 𝐿 = 64
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We call this recurrent model DeepGAN, which we designed incre-
mentally, informed by the latest developments in deep learning.
Early on, the simplicity and the recognition power of the recently
proposed DeepGRU model [28] inspired us to adopt it as our dis-
criminator. This encoder-style model has shown promising results
in various recognition tasks [6, 38]. Through experiments guided
by an ablation study on DeepGRU [28], and with the goal of man-
aging design complexity, we settled for the simpler uDeepGRU [6]
variant as our discriminator. As for our generator, we conducted
experiments across different datasets with generators consisting of
both LSTM and GRU units, as well as a varying number of recurrent
layers. We observed stabler training, less overfitting and more plau-
sible outputs with a decoder-style network resembling the flipped
version of our discriminator. A possible explanation for this could
be that this choice potentially benefits from the balance between
the two 𝐷 and 𝐺 networks. Figure 1 depicts the architecture of
DeepGAN, which we believe is easy to understand and straight-
forward to implement in any modern deep learning framework. A
common design for RNN-based generators is the use of the 𝑡𝑎𝑛ℎ()
activation function in the last layer, which is what we use as well.

To generate a gesture sample x′ of class 𝑐 , the class-conditioned
latent vector z𝑐 is fed to 𝐺 where z𝑐 is defined as Equation 1. Note
that each time step 𝑧𝑖 ∈ z𝑐 is sampled independently from the
standard normal distribution2, and class-conditioning is done by
appending the one-hot representation of 𝑐 to each time step which
avoids ignoring the conditioning through forgetting [10].

z𝑐 =
{
[ 𝑧𝑖 ; ĉ ] : ∀𝑧𝑖 ∼ N

(
0, 1

)
, ĉ = one-hot

(
𝑐
)}

(1)

We experimented with different loss functions to train DeepGAN.
Even though training with the classic adversarial loss [12] yielded
plausible results, we observed improved sample quality and better
convergence with the improved version [14] of theWasserstein loss
(WGAN) [2], which is what we settled on using for our evaluations.
Figure 1 depicts DeepGAN’s architecture.

3.3 Non-Adversarial Gesture Generation
Although DeepGAN shows promising results (see Section 4), it
demonstrated a few shortcomings early on. Most importantly, the
need for training two networks simultaneously increases the train-
ing burden: changes in one network may adversely affect the other
and most hyperparameters need to be tuned twice. Moreover, train-
ing times are long and we observed that the model required tens
of thousands of generator iterations to converge. Aiming to recon-
cile these challenges, we present our loss function that completely
replaces the discriminator. We start by providing an intuition for
training a sequence generator without a discriminator, then proceed
with the formal definition of our loss function.
Intuition. The key to simplify the network design is the answer
to a fundamental question: can we possibly train the single net-
work generator network 𝐺? A generator network aims to learn
the distribution of the underlying dataset D, so that new examples
can be sampled from the distribution, which is typically done with
the help of a discriminator (or a critic, in the case of WGAN-based
models).
2The dimensionality of the latent space was fixed to 32 dimensions.

To simplify the gesture generation procedure, we pose the prob-
lem in a slightly different way: let us train a generator that aims
to produce gestures that are similar to their real counterparts. The
fundamental question then becomes, how to train a generator that
increases the similarity between the generated and the real ges-
tures? The answer is surprisingly simple: by reducing the dissimi-
larity between the two! Conveniently, a well-studied dissimilarity
measure for time-series (as well as gestures [43]) is dynamic time
warping (DTW) [36]. A differentiable formulation of DTW called
soft DTW (sDTW) was recently proposed by Cuturi and Blondel [7].

DTW is a dynamic programming algorithm that was originally
proposed for speech recognition [36]. It is a dissimilarity measure
of two time-series that can be used to find their optimal alignment
for various time-series analysis tasks [33]. Given two time-series
X = {𝑥1, 𝑥2, ..., 𝑥𝑛} and Y = {𝑦1, 𝑦2, ..., 𝑦𝑚}, a cost matrix Δ of size
𝑛 ×𝑚 is built. Each element Δ𝑖 𝑗 is the matching cost of 𝑥𝑖 to 𝑦 𝑗 ,
computed via the following recursion:

Δ𝑖 𝑗 = 𝑓
(
𝑥𝑖 , 𝑦 𝑗

)
+min

{
Δ𝑖−1, 𝑗 , Δ𝑖, 𝑗−1 , Δ𝑖−1, 𝑗−1

}
(2)

where 𝑓
(
𝑥𝑖 , 𝑦 𝑗

)
is a problem-specific cost (distance) function. Al-

though Euclidean distance (ED) is widely used, Taranta et al. [41, 43]
demonstrated the superiority of using the cosine similarity measure
(COS) for gesture recognition problems. Once Δ is fully computed,
the value Δ𝑛𝑚 is the dissimilarity measure of X and Y, and the
path through the matrix that yields Δ𝑛𝑚 is the optimal alignment
between the two time-series. Cuturi and Blondel’s sDTW formu-
lation [7] replaces the min{} operator with a differentiable (soft)
minimum defined as:

min𝛾>0
{
Δ1,Δ2, ...,Δ𝑛

}
= −𝛾 log

𝑛∑
𝑖=1

𝑒−Δ𝑖/𝛾 (3)

where 𝛾 controls the smoothness (smaller 𝛾 yields a closer approxi-
mation of classic DTW). Cuturi and Blondel show that the resulting
Δ𝑛𝑚 would be the expected value of dissimilarity between X and
Y, over every possible alignment between them weighted by their
probability under the Gibbs distribution [7]. Further, they formulate
the derivative of sDTW using backpropagation through a computa-
tion graph. A detailed explanation is available in [7].
Loss formulation. To increase the similarity of a real example
x and a fake example x′, one could naïvely decide to learn 𝜃 by
minimizing L = sDTW

(
𝐺𝜃 (z𝑐 ), x; 𝑓 ) where 𝑓 is the cost function

of Equation 2. Unfortunately, this formulation merely states that
generated samples x′ should be as similar to the real samples x as
possible, ignoring inter-class variations. A trivial solution to this
formulation, that was easily achievable in our tests, is the per-class
centroid sample.

To overcome this issue and account for inter-class variability,
we formulate the loss function as a coverage measure (point set
similarity) of a set of fake and real examples. For this, we propose
using the Hausdorff distance, a well-studied measure for point set
similarity [9] that can be easily implemented and computed. Con-
veniently, the average Hausdorff distance (denoted as 𝑑H ) between
two point sets A and B is differentiable [34] and is defined as:
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𝑑
𝑓

H (A,B) =
1
|A|

∑
𝑎∈A

min
𝑏∈B

𝑑

(
𝑎, 𝑏; 𝑓

)
+ 1

|B|
∑
𝑏∈B

min
𝑎∈A

𝑑

(
𝑏, 𝑎; 𝑓

)
(4)

where 𝑑
(
𝑎, 𝑏; 𝑓

)
is the distance (dissimilarity) between two points 𝑎

and 𝑏 parameterized by 𝑓 . We use 𝑑
(
𝑎, 𝑏; 𝑓

)
= sDTW(𝑎, 𝑏; 𝑓 ), and

will discuss the choice of 𝑓 (sDTW’s cost function) shortly. Finally,
we propose the following as DeepNAG’s loss function to minimize.
To our knowledge, this is the very first formulation of a single loss
measure to train a deep recurrent neural network for generating
synthetic gesture sequences:

L𝑓 (X′,X) = 𝑑
𝑓

H
(
x′1, x1

)
︸        ︷︷        ︸
Similarity term

+
���𝑑 𝑓H (

x′1, x′2
)
− 𝑑

𝑓

H
(
x1, x2

) ���︸                              ︷︷                              ︸
Variation term

(5)

where X′ = {x′1, x′2} (two generated samples), and X = {x1, x2}
(two real samples), and both sample sets belong to the same ges-
ture class. Intuitively, Equation 5 expresses that training 𝐺 should
aim to increase the similarity of fake and real examples3 (similar-
ity term), while maintaining the similarity balance between two
batches of fake and real examples (variation term). The former term
ensures real and generated samples are similar, while the latter
term ensures generated examples maintain proper overall inter-
class variations, effectively avoiding pitfalls such as mode-collapse
typically encountered in GANs.

We briefly experimented with non-elastic dissimilarity functions
as alternatives to sDTW in our formulation. This was motivated by
the fact that our training samples were all resampled to the same
length. Our experiments revealed a clear benefit in using sDTW
over Euclidean distance in terms of sample generation quality. This
observation is in line with prior work [43], and we posit that this
is due to the elastic nature of gesture articulations.
Practical notes. During training, Equation 5 is computed over
a batch of training samples, thus the number of gesture samples
involved in the computation of either loss term depends on the
training batch size. Also, we only used the derivative 𝜕L𝑓 /𝜕x′1
to optimize the model since training was faster and more stable.
This implies that the computation of 𝑑 𝑓H

(
x′2, x2

)
as an additional

similarity term in Equation 5 is unnecessary, simply because its
gradient w.r.t. x′1 is zero.

When computing sDTW(𝑎, 𝑏) we ensure class-awareness: the
value is only computed if samples 𝑎 and 𝑏 belong to the same ges-
ture class. As for the choice of sDTW’s internal cost function 𝑓 ,
we started with ED, but the benefits of using COS quickly became
apparent to us: minimizing LED yielded high-quality results but
convergence was slow. Conversely, minimizing LCOS led to much
faster convergence with sometimes noisier results. In the end, we
settled for minimizing both and leave a thorough study on the ef-
fects of each cost function to future work. Lastly, recall our use of
fixed-length sequences (𝐿 = 64) where the points in the sequence
are equidistant. To enforce the production of such sequences by 𝐺

3In other words decrease their dissimilarity

we add an additional term LResample to our objective. Putting every-
thing together, the following is the loss function that we minimize
for our experiments:

LDeepNAG

(
X′,X

)
= LED

(
X′,X

)
+ LCOS

(
X′,X

)
+ 𝛼 · LResample

(
x′1

)
LResample

(
x′
)
=

1
| ®x′ |

∑
∀ ®𝑥′

𝑖
∈ ®x′

(


 ®𝑥 ′𝑖 


 − �̃�(x′)
)2

, �̃�(x) = 1
|®x|

∑
∀ ®𝑥𝑖 ∈®x




 ®𝑥𝑖




(6)

where �̃�(x) is the length of each ®𝑥𝑖 ∈ ®x after x is resampled to 𝐿

equidistant points. Thus, LResample simply enforces that points in
x′ be equidistant with 𝛼 as its regularizer. Note that minimizing
LED alone (Equation 5) yields good-quality results in most cases.
Yet, we achieved faster convergence and better data augmentation
performance using Equation 3.3.

As we discuss shortly, a generator trained with our loss function
demonstrates promising results compared to the same generator
trained in a GAN setting. In addition to these two training con-
figurations, we considered training our generator in a variational
autoencoder (VAE) [19] setting. Although we successfully gener-
ated gesture sequences using our proposed VAE, the quality and the
variety of our produced samples were sub-par compared to either
DeepGAN or DeepNAG. Refer to Appendix A for more details.

4 EVALUATION
We evaluate DeepGAN and DeepNAG from two aspects. First, we
conduct experiments to determine the efficacy of either model in
data augmentation tasks to address data shortage. We then evaluate
the perceived realism of our synthetic gestures through a user
study on Amazon Mechanical Turk based on a recently introduced
benchmark [51].

4.1 Data Augmentation Performance
Our experiment design for this study is as follows. Given a dataset
of gestures collected from multiple participants, we simulate small
training sets by splitting the data into training (50%), validation
(20%) and test (30%) sets. Our experiments are all subject-independent;
i.e. the data of each participant only appears in one of these sets.
This is a more challenging and realistic evaluation protocol, as it en-
sures that during training, the recognizer never sees any data from
the participant that it will be evaluated on during the validation
and testing phases.

We begin by training a gesture recognizer on the training set,
and use the validation set for model selection. We evaluate the
best performing model on the test set and record its recognition
error (baseline). Next, we augment the training set with a selected
data generation method and repeat the experiment: train the recog-
nizer with this new training set, use the validation data for model
selection, and evaluate the best model on the test set. We record
the recognizer’s recognition error again, which will be the error
after augmenting the training set. Comparing this number with
the baseline benchmarks the synthetic data generation method. In
total we perform 150 experiments: we train five gesture recognizers
on six different datasets to evaluate four synthetic data generation
methods against the baseline.
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Datasets.We selected six datasets among the ones frequently stud-
ied in the literature. They vary in size and span across gesture
modalities and input devices: JK2017 (Kinect) [43] (14 full-body
fighting gestures of 20 participants with Kinect v2), JK2017 (Leap
Motion) [43] (eight hand-gestures of 20 participants with Leap
Motion), UT-Kinect [46] (ten full-body daily activities of ten partic-
ipants with Kinect v1), MSR Action 3D [25] (20 full-body actions
of ten participants with Kinect v1), SBU Kinect Interactions [49] (8
two-person interaction of seven participants with Kinect v1) and
$1-GDS [45] (16 2D pen gestures of ten participants).
Recognizers. We selected five gesture recognizers: support vector
machine (SVM), random forest, naïve Bayes, DeepGRU [28] and
Jackknife [43]. These represent classic machine learning algorithms,
deep learning as well as rapid prototyping [43] approaches, which
are common choices for gesture recognizers. The first threemethods
require explicit feature extraction for which we use the Rubine [35]
feature set extended to 3D gestures [37]. Jackknife [43] is a 1-nearest
neighbor DTW-based template matching recognizer.
Data generation methods. We compare four data generation
methods against the baseline: random Gaussian noises, GPSR [42],
DeepGAN andDeepNAG. The effectiveness of GPSR for 3D gestures
has been previously demonstrated [6, 28].
Implementation.We implemented DeepGAN and DeepNAGwith
the PyTorch [29] framework which we have publicly released4. Ad-
ditionally, our implementation requirements yielded multiple other
standalone projects, which we have made public in the hope of
benefiting the deep learning community. Inspired by [52], we im-
plemented a CUDA version of sDTW with a PyTorch interface
using Numba [20]. Our novel implementation runs more than 100×
faster than any other publicly available implementation that we
know of5. Additionally, we implemented fast GRU units using Py-
Torch’s just-in-time (JIT) compilation features6 to allow computing
their higher-order derivatives, a feature that is missing in PyTorch7.
Such derivatives are required to implement the improved WGAN
loss [14] for GRUs.
Hyperparameters. All hyperparameters were tuned across dif-
ferent datasets, but the same set of parameters were used for every
experiment. Both DeepGAN and DeepNAG were trained on the
50% split training set, and shared most hyperparameter settings. We
use the Adam [18] solver (𝛽1 = 0.5, 𝛽2 = 0.9), with a learning rate
of 10−4 and a mini-batch size of 64. DeepGAN-specific hyperpa-
rameters were chosen from [14], as they performed the best in our
validation runs. Other parameters were chosen via cross-validation
as follows. For DeepNAG we used 𝛾 = 0.1 and 𝛼 = 103. GPSR pa-
rameters were set to 𝑟 = 2, 𝜎 = 0.25 and the magnitude of random
noise was set to 2% of the bounding box of each feature.
Results and discussion. Figure 2 depicts the results of our exper-
iments8. In many cases the use of some form of data augmentation

4https://github.com/Maghoumi/DeepNAG
5https://github.com/Maghoumi/pytorch-softdtw-cuda
6https://github.com/Maghoumi/JitGRU
7To our knowledge, the cuDNN framework is missing this feature. Thus, at the time
of this writing one cannot compute higher-order derivatives for GPU-based GRUs in
any deep learning framework that relies on cuDNN.
8A video demo of generated gestures is available at https://www.deepnag.com

decreases the recognition error, indicating that our 50% split to sim-
ulate small training sets is working as expected. To better contrast
the generation methods we employ a scoring scheme that quantifies
whether the use of a given augmentation method is both warranted
and effective. Data augmentation is only warranted if a recognizer
trained with the additional data outperforms the baseline. Addition-
ally, a method is effective only if it outperforms random noise. We
start with a score of zero for a given generator. In each experiment
set, we increment this score by one if the method outperforms all
other methods in addition to the baseline and random noise. Ties
are only counted if the method outperforms both random noise and
the baseline, and we use the cumulative score for comparison.

Table 1 presents the computed score aggregates over each dataset
and recognizer.We observe that across both aggregate groups, Deep-
NAG outperforms other methods by a large margin, suggesting
its suitability for data augmentation regardless of the choice of
dataset or recognizer. In a few cases, DeepNAG reduced the recog-
nition error to zero. Compared to GPSR, these results are notable
as DeepNAG generates new examples purely from random noise.
Conversely, GPSR perturbs existing examples to generate new ones.
This process leaves some characteristics of the original gesture (e.g.
bounding box size) largely unchanged, which benefits recognizers
that rely on such features.

Figure 2 also shows cases wherein data augmentation seems
harmful. In particular, we observe increased errors in almost all
cases where data generation is used with multi-actor gestures (Fig-
ure 2e). This suggests that our generators may not be suitable for
generating multi-actor gestures, which we confirmed by visual in-
spection. In some cases, both DeepGAN and DeepNAG confuse
the main and the secondary actors, yielding malformed gestures.
We intend to study the generation of such gestures in future work.
We additionally inspected some of the generated examples of Fig-
ure 2f wherein our generators increased recognition errors. Most
synthetic examples were visually fine which suggests that the use
of domain adaptation techniques may be helpful [1, 30, 53]. We
plan to explore this in the future.

During visual inspection, we did not observe any mode-collapse
issues with DeepNAG. We observed healthy variations across all
gesture classes and datasets with minimal amounts of degenerate
samples (except for the few cases noted above, typically less than 1%
of the generation samples were degenerate). Lastly, factors such as
ease of training and training times compel the use of DeepNAG over
DeepGAN as the former offers a significant reduction in training
times. Training DeepGAN on a Tesla V100 GPU takes between
3-5 days depending on the dataset size, whereas DeepNAG takes
around 3-7 hours under the same conditions, a speedup of 12–17×.

Overall, our results indicate that DeepNAG outperforms Deep-
GAN on data augmentation tasks, regardless of the choice of dataset
or recognizer. These results are notable, as the generator model in
both DeepGAN and DeepNAG is exactly the same. In other words,
the generator which is trained using our novel loss function out-
performs the same generator trained in a GAN setting with the
improved Wasserstein loss. Additionally, our loss function trains
the generator in a much shorter period of time.

https://www.deepnag.com


IUI ’21, April 14–17, 2021, College Station, TX, USA Mehran Maghoumi, Eugene M. Taranta II, and Joseph J. LaViola Jr.

SVM Naive Bayes Random Forest DeepGRU Jackknife0

5

10

15

20

25

Re
co

gn
iti

on
 E

rro
r (

%
)

12
.5

23
.8

8.
9

4.
8

0.
0

10
.1

23
.2

7.
7

4.
8

0.
0

11
.9

22
.6

8.
3

4.
8

0.
0

7.
7

6.
5

6.
0

5.
4

0.
0

7.
1

8.
9

7.
7

4.
2

0.
0

Baseline
Random Noise
GPSR
DeepGAN
DeepNAG

(a) JK2017 (Kinect) [43]
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(b) JK2017 (Leap Motion) [43]
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(c) UT-Kinect [46]
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(d) MSR Action3D [25]
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(e) SBU Kinect Interactions [49]
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(f) $1-GDS [45]

Figure 2: Results of evaluation across six datasets (best viewed in color).

Table 1: Generator scores aggregated over dataset and recognizer.

Dataset
Generator Score

Recognizer
Generator Score

GPSR DeepGAN DeepNAG GPSR DeepGAN DeepNAG

JK2017 (Kinect) [43] 0 2 2 SVM 2 0 4
JK2017 (LeapMotion) [43] 0 1 4 Naïve Bayes 1 3 2
UT-Kinect [46] 0 1 2 Random Forest 2 1 3
MSR Action3D [25] 1 0 3 DeepGRU [28] 0 1 3
SBU Kinect 2 0 0 Jackknife [43] 0 0 2
$1-GDS [45] 2 1 1
Total Score 5 5 12 5 5 14
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4.2 User Study
Qualitative evaluation of generative models through user studies
has become a common practice in the literature [22, 51]. We there-
fore turn our focus to the comparison of DeepGAN and DeepNAG
based on the perceived quality of the generated samples using hu-
man evaluators based on the HYPE∞ [51] benchmark. This bench-
mark defines the gold standard for evaluating generative realism
on crowd-sourcing platforms.

To compare different generative models, HYPE∞ defines an ex-
periment with 30 participants: each participant only sees the results
from one of the models. For a given generative model, every par-
ticipant is shown a total of 100 samples comprised of 50 fake and
50 real samples. Given each sample, participants are asked to indi-
cate whether they think that sample is real or computer-generated.
Participants have an infinite amount of time to make this binary
choice. Afterwards, the percentage of the samples that were judged
incorrectly is computed for every participant. Obtained values are
averages over 30 participants and the final result is reported as
the HYPE∞ score for the understudied generative model. Zhou et
al. [51] showed that this protocol ensures repeatability and main-
tains the separability between different generative models and can
be used as a reliable measure of the generative model’s quality.

Using this protocol, we conduct our user study on Amazon Me-
chanical Turk for a given dataset D and a generator 𝐺 . We first
train the 𝐺 on D to convergence. Using the trained model, we then
sample as many fake samples as the real samples in D. The 100
samples needed to show a given participant are selected by ran-
domly choosing 50 fake and 50 real samples from the pool of all
available samples. We recruit 30 participants for every combina-
tion of D and 𝐺 . Participants begin by studying the purpose of the
study and answering demographic questions as detailed in Table 2.
We then show them each of the 100 samples and ask them to in-
dicate whether they think a given sample is produced by human
or computer-generated (see Figure 3). Every gesture sequence is
drawn in the form of a looping gif animation with a framerate of
32. Between each animation loop, we display a countdown with a
duration of 0.25 seconds. This was inspired by [51] and was done
to avoid confusing participants who may be unaware that they are
watching an infinitely-looping animation. Note that the order of the
samples shown to every participant is random and varies among
different participants. This was done to avoid any learning effects
in the experiment.

Participants are given an infinite amount of time to respond to
each question. Similar to the HYPE∞ benchmark, we reveal the cor-
rect answer to the participant upon submitting a response to every
question. Participants can participate in our study only once, which
ensures unique responses across all experiment conditions. At the
end of the study, we reveal the overall accuracy of the participant
in our task and pay them $2 for their time [51].

When posting our study on the Mechanical Turk platform, we
created a list of criteria to ensure the selection of a pool of high-
quality workers. We refined and validated these criteria through
trials on Mechanical Turk prior to starting our actual study. First,
participants must have an approval rating of at least 97% to par-
ticipate in our study to filter out low-quality workers. Our next
participation requirement is that workers must have completed at

Figure 3: The interface of our user study application. Partic-
ipants are shown the gesture animation and are asked to se-
lect either “human" or “machine". Once “submit" is clicked,
the correct answer is revealed.

Table 2: Pre-study questionnaire. Except for age, the remain-
ing questions are multiple-choice.

Q1 What is your gender?

Q2 What is the highest level of education that you have
completed?

Q3 What is your age?

least 5000 studies. This criterion filters out participants who may
have high approval ratings because they recently joined the plat-
form. Lastly, participants must be Mechanical Turk Masters to be
eligible to participate in our study. Amazon uses proprietary criteria
to grant top-performing workers this qualification. Although the
exact criteria is not publicly disclosed, Amazon claims they contin-
uously monitor the performance of master workers across different
user studies on the platform to ensure consistent performance9.

Our study consisted in evaluating each of DeepGAN and Deep-
NAG on three datasets covering different gesture modalities: Kinect
(JK-2017 [43]), Leap Motion (JK-2017 [43]) and Pen gestures ($1-
GDS [45]). Thus our generator factor has two levels and our dataset
factor has three levels, yielding a total of six experiments.
Results and discussion. In total, we recruited 180 participants
(30 participants for each of our six experiments) with an average
age of 41 years (𝜎=10.8). Figure 4 depicts the demographics of our
participants. Across all tasks, participants spent an average of 12.3
minutes (𝜎=3.8), and each question was answered in 7.4 seconds
on average (𝜎=2.3). Considering a payment of $2 per study, our
participants were compensated well above the minimum wage
specified by the United States federal guidelines ($7.25 per hour at
the time of this writing).

9Details available at https://www.mturk.com/worker/help

https://www.mturk.com/worker/help
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Figure 4: Demographics of our user study participants (best viewed in color).

Table 3: AmazonMechanical Turk user study results. Reported values are percentages (averaged over 30 participants). The top
performing model on each dataset (with statistical significance) is boldfaced.

Dataset Generator HYPE∞ Std. Fake Errors Real Errors
JK2017 (Kinect) [43] DeepNAG 48.1 8.8 53.9 42.3

DeepGAN 38.4 12.9 44.3 32.5
JK2017 (LeapMotion) [43] DeepNAG 51.0 4.3 56.1 45.8

DeepGAN 22.7 11.4 23.9 21.4
$1-GDS [45] DeepNAG 50.0 6.7 56.3 43.7

DeepGAN 44.4 8.3 49.5 39.3

Table 3 summarizes our user study results. In all experiments,
we observe higher HYPE∞ scores for DeepNAG compared to Deep-
GAN. Unpaired t-tests confirm the difference is significant in every
case: 𝑡 (58)=3.3, 𝑝=0.001 (JK2017-Kinect [43]), 𝑡 (58)=12.4, 𝑝<0.001
(JK2017-Leap Motion [43]) and 𝑡 (58)=2.8, 𝑝=0.006 ($1-GDS [45]).

Focusing on the results with JK2017 (Leap Motion) [43] dataset,
we observe a large HYPE∞ score gap between the two generators.
Notably, DeepNAG achieves hyper-realism on this dataset: its fake
samples look more realistic to humans than the real ones. These
results correlate well with those in Section 4.1: on the Leap Motion
dataset, DeepNAG significantly outperformed DeepGAN in reduc-
ing the recognition error (Table 1) and in some cases, DeepNAG
reduced the recognition error to zero (Figure 2).

Similar to [51], we report a breakdown of the error on the real
and fake samples. We observe higher fake errors with DeepNAG in
all cases. Inline with Zhou et al.’s observation [51], real and fake
errors track each other. This indicates participants become more
confused when fake samples are particularly hard to distinguish
from the real ones.

In summary, our study shows that it is harder for evaluators to
distinguish DeepNAG’s synthetic samples from the real samples
compared to those produced by DeepGAN. This trend holds regard-
less of the dataset and gesture modality. Additionally, DeepNAG
not only outperformed DeepGAN in every experiment, but it also
achieved hyper-realism on the Leap Motion dataset. These results

correlate well with our data augmentation performance evalua-
tions in Section 4.1 and are notable considering that DeepNAG and
DeepGAN both use the same underlying generator.

5 CONCLUSION
We discussed modality-agnostic gesture generation with recurrent
neural networks. We first presented DeepGAN, our GAN model for
synthetic gesture generation across various datasets and gesture
modalities. To reduce the training complexity, we formulated a
novel loss function based on the dynamic time warping (DTW)
algorithm and the average Hausdorff distance. Our loss function
obviated the need for a separate discriminator network, and led
to 12–17× faster training. We called this approach DeepNAG and
evaluated it from two aspects. Our first evaluations focused on
the use of either model towards data augmentation for improved
gesture recognition. In these evaluations, DeepNAG outperformed
DeepGAN, along with other synthetic gesture generators across
various datasets and recognizers. Next, we evaluated the perceived
quality of the synthetic samples produced by DeepGAN and Deep-
NAG using human evaluators. Our user study, which was based on
the HYPE∞ benchmark and was conducted using Amazon Mechan-
ical Turk, demonstrated that DeepNAG consistently outperformed
DeepGAN in terms of the realism of the synthetic samples. Users
confused DeepNAG’s samples with the real ones more frequently,
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and on one of our studied datasets, DeepNAG achieved hyper-
realism by obtaining a HYPE∞ score of 51%.

In the future, we plan to more deeply explore the generation
of multi-actor gestures, as well as the use of domain adaptation
techniques to further improve data augmentation performance.
Lastly, we aim to explore the application of our loss function in
problem domains besides gestures such as time-series generation.
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A APPENDIX: GESTURE GENERATIONWITH
VARIATIONAL AUTOENCODERS

Thus far, we have shown that training our proposed RNN-based
gesture generator using our novel loss function outperforms the
same generator that is trained with the improved Wasserstein loss
in a GAN training setting. In this section we investigate whether
our generator can be trained in a variational autoencoder setting.

A.1 Background
Variational autoencoders (VAE) [19] are a class of autoencoders [3,
17] designed for generative modeling. Similar to autoencoders,
VAEs consist of encoder and decoder networks. However, the goal
of VAEs is to model the distribution of the input data by learning a
latent representation thereof. As such, the encoder network maps
the input data x to a probability distribution (latent space) while
the decoder network aims to reconstruct the original data from a
vector z in that latent space. Once training concludes, the decoder
network can be used to generate synthetic samples. The loss func-
tion for VAEs consists of reconstruction as well as regularization
terms. The reconstruction term ensures that the reconstructed data
closely resembles the input data. The regularization term ensures
that the learned distribution of the latent space is as close to some
known distribution as possible (typically the standard normal dis-
tribution). Assuming that 𝜙 and 𝜃 denote the trainable parameters

of the encoder and decoder respectively, the following is the loss
function that is minimized [5]:

L (𝜃, 𝜙 ; x, z) = −E𝑞𝜙 (z |x)
[
log 𝑝𝜃 (x|z)

]
︸                        ︷︷                        ︸

reconstruction

+ 𝐷𝐾𝐿
(
𝑞𝜙 (z|x)

���� 𝑝 (z))︸                     ︷︷                     ︸
regularization

(7)
where𝐷𝐾𝐿 (

���� ) is the Kullback-Leibler (KL) divergence between two
probability distributions. Equation 7 simply aims to minimize the re-
construction error as well as the KL divergence between the learned
latent space and the standard normal distribution (𝑝 (z) = N(0, 1)).
Note that in this formulation, class labels are not considered, which
means one cannot control what sample class is produced for a given
z. Sohn et al. [39] proposed conditional VAEs in which a condition-
ing criteria is applied to the input data x as well as the latent vector
z similar to conditional GANs as described in Section 3.2.

A.2 Model Architecture and Objective Function
We iteratively designed our VAE’s overall architecture. Given our
goal of training the generator of DeepGAN/DeepNAG in a VAE
framework, we reused the aforesaid generator as the decoder in
our VAE network. As for the encoder, we started with using the
uDeepGRU model as the encoder. This way, our overall VAE net-
work closely resembled that of DeepGAN’s. After running some
preliminary experiments, we observed that the choice of the en-
coder architecture did not result in perceptible difference in the
model’s performance. In fact, adding or removing layers in either
the encoder or the decoder made little difference in the produced
results, inline with what Bowman et al. [4] observed. We ultimately
decided to carry on with an architecture similar to Figure 1.

We now discuss our proposed training objective function which
can be used to train our RNN-based generator in a VAE framework.
As previously mentioned, the VAE objective function typically con-
sist of reconstruction and regularization terms.We can conveniently
reuse the regularization term of Equation 7, as it simply ensures that
the learned latent space follows the standard normal distribution.
The reconstruction term, however, is domain-specific. Recall that
the this term ensures that the output of the decoder (generator)
closely resembles the input data. Conveniently, a differentiable mea-
sure that can be used for this purpose is sDTW. Thus, we propose
the following loss function as the objective to minimize during the
training our gesture generating VAE:

L (𝜃, 𝜙 ; x, z𝑐 ) = sDTW
(
x,𝐺𝜃 (z𝑐 ); 𝑓

)
+ 𝐷𝐾𝐿

(
𝑞𝜙 (z𝑐 |x)

���� 𝑝 (z𝑐 ))
(8)

where 𝑓 is sDTW’s internal cost function and z𝑐 is the latent vector
conditioned on the class label 𝑐 . In simple terms, we define the
reconstruction error as the sDTW dissimilarity between the input
data and the output of the generator. As mentioned in Section 3.3,
Cuturi and Blondel show that the computed sDTW value would
be the expected value of dissimilarity between two time-series,
over every possible alignment between them weighted by their
probability under the Gibbs distribution [7]. This closely resembles
the original reconstruction term of VAEs (Equation 7). Though
VAEs have previously been used to generate 2D sketches [16], to
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(a) VAE (samples)

(b) VAE (overlays)

Figure 5: Synthetic gestures produced by our VAE-based gen-
erator trained on $1-GDS [45] dataset. Note that most sam-
ples are noisy and lack visual fidelity. We further show over-
layed rendering of synthetic samples from our VAE model
(b – top), and real samples (b – bottom). Each overlay con-
sists of 16 samples per class. Note the lack of variety in the
synthetic results compared to the real samples.

our knowledge our proposed loss function is novel, and we are the
first to formulate such function specifically for gesture generation
of various modalities using VAEs.

A.3 Results
As previously mentioned, changes in the architecture of our model
made little difference in the produced results. Although training
plots showed a steady decrease of the loss value and training con-
verged, the generated results lacked visual quality and diversity.
Most gesture trajectories were rather noisy. Again, we observed
this trend regardless of the architecture of encoder or decoder
networks, various hyperparameter settings, the choice of 𝑓 (we
tried ED and COS) or even the gesture dataset. We additionally
experimented with alternative reconstruction terms. Specifically,
we experimented with the mean squared error (MSE) of both the Eu-
clidean distance as well as the cosine similarity of gesture paths (®x)
between the input and reconstructed samples. These alternate for-
mulations performed worse than our sDTW-based reconstruction
term.

Some samples produced by our VAE model when trained on the
$1-GDS dataset [45], along with overlayed samples for each of the
real and synthetic data are depicted in Figure 5. These results show
that the produced samples lack sufficient diversity when compared
to the real samples. Given the visual quality of the results, we
hypothesize that our proposed VAE framework is not suitable for
training our generator to produce good synthetic samples.
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