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a b s t r a c t 

Gesture recognition is a fundamental tool to enable novel interaction paradigms in a variety of appli- 

cation scenarios like Mixed Reality environments, touchless public kiosks, entertainment systems, and 

more. Recognition of hand gestures can be nowadays performed directly from the stream of hand skele- 

tons estimated by software provided by low-cost trackers (Ultraleap) and MR headsets (Hololens, Oculus 

Quest) or by video processing software modules (e.g. Google Mediapipe). Despite the recent advance- 

ments in gesture and action recognition from skeletons, it is unclear how well the current state-of-the- 

art techniques can perform in a real-world scenario for the recognition of a wide set of heterogeneous 

gestures, as many benchmarks do not test online recognition and use limited dictionaries. This motivated 

the proposal of the SHREC 2021: Track on Skeleton-based Hand Gesture Recognition in the Wild. For this 

contest, we created a novel dataset with heterogeneous gestures featuring different types and duration. 

These gestures have to be found inside sequences in an online recognition scenario. This paper presents 

the result of the contest, showing the performances of the techniques proposed by four research groups 

on the challenging task compared with a simple baseline method. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The recognition of gestures based on hand skeleton tracking is 

ecoming the default interaction method for the new generation 

f Virtual Reality (VR) and Mixed Reality (MR) devices like Ocu- 

us Quest and Microsoft Hololens, implementing specific, advanced 

olutions [5,16] . Low-cost hand tracking devices with good perfor- 

ances are available since 2010 [19] and are used in several ap- 
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lication domains and research works. Real-time hand pose track- 

ng is now possible from single-camera input using Google tools 

22] . It is, therefore, extremely likely that most of the future hand 

esture recognition tools will work directly on the hand skeleton 

oses and not on RGB or depth images. These facts strongly mo- 

ivate research efforts aimed at the development of such tools. In 

ractical application scenarios, these gesture recognizers need to 

ork in real-time and to be able to detect and correctly label ges- 

ures ”in the wild” within a continuous sequence of hand move- 

ents. 

Several methods have been recently proposed in the litera- 

ure for the skeleton-based gesture recognition task. However, as 

ointed out in [1] , current available benchmarks that focus on 

nline-recogntion scenarios are limited. Many of them do not test 

ecognizers in an online setting or evaluate the methods on limited 

ocabularies and not including many gesture types. Hand gestures, 

n fact, can be classified into different types according to their dis- 

inctive features. Some gestures are static, characterized by keeping 

 fixed hand pose for a minimum amount of time. Others are dy- 
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Fig. 1. Gesture templates for the different classes. Top row: static gestures. Middle row: coarse dynamic gestures. Bottom row: fine dynamic gestures. 
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amic and characterized by a single trajectory with the hand pose 

hat does not change or it is not semantically relevant. Others are 

ynamic and characterized not only by a global motion, but also 

y the evolution of fingers’ articulation over time. 

Previous contests organized on skeleton-based gesture recogni- 

ion were limited to offline recognition (SHREC’17 Track: 3D Hand 

esture Recognition Using a Depth and Skeletal Dataset [3] ) or fea- 

ured a very limited dictionary of gestures (SHREC 2019 track on 

nline gesture detection [2] ). 

For this reason, we created a novel dataset including 18 ges- 

ure classes belonging to different types. A subset of 7 classes are 

tatic, characterized by a hand pose kept fixed for at least one sec- 

nd (One, Two, Three, Four, OK, Menu, Pointing). The remaining 

nes are dynamic, 5 coarse, characterized by a single global trajec- 

ory of the hand (Left, Right, Circle, V, Cross) and 6 fine, charac- 

erized by variations in the fingers’ articulation (Grab, Pinch, Tap, 

eny, Knob, Expand). Fig. 1 shows the gestures’ templates. A pecu- 

iarity of the data collected is that the gestures are executed within 

ong sequences of hand gesticulation, as they were captured during 

eneric user interaction. 

Given the dataset, we proposed an online recognition task 

ithin the Eurographics SHREC 2021 framework. This paper 

eports on the outcomes of the contest’s result. The pa- 

er is organized as follows: Section 2 presents the novel 

ataset, Section 3 the proposed task and the evaluation method, 

ection 4 presents the groups participating in the contest and the 

ethods proposed together with a baseline method. 

. Dataset creation 

The dataset created for the contest is a collection of 180 gesture 

equences. Each sequence, captured using a Leap Motion Device, 

eatures either 3, 4, or 5 gestures interleaved with non-significant 

esticulation. The dictionary used consists of 18 classes of gestures, 

ach appearing in the dataset an equal amount of time (40 occur- 

ences per class). 

Gestures were performed by five different subjects in pre- 

etermined sequences. The execution of the dictionary gestures 

ollowed specific templates shown in advance. Non-significant ges- 
202 
iculation was limited to a restricted set of allowed movements to 

void biases on false detections. 

We designed a randomized set of 36 sequences (12 with 3 ges- 

ures, 12 with 4 gestures, and 12 with 5 gestures). Each set thus 

ncludes 8 samples of the 18 gesture classes (a total of 144 gesture 

amples across the 36 sequences). Each subject recorded such a set 

f sequences for a total of 180 sequences with 720 gestures. 

Three of the acquired sets (108 sequences with 24 samples of 

ach gesture class) were given to the participants as the training 

et, with the associated annotations of gestures begin/end and la- 

els. The remaining two (72 sequences with 16 occurrences of each 

esture class) were given to the participants as the test set with- 

ut associated labels. Gestures in the test sets were performed by 

ubjects not involved in the training set creation. 

We performed the acquisition of the sequences using a simple 

nity app running on a desktop PC. Subjects had to wear a head- 

and with the leap motion device mounted over simulating sensor 

ounted on VR/AR glasses. The graphical interface of the app sug- 

ested the randomized temporal sequences of the gestures. 

The accurate annotation of the timestamps of the start and 

nd of the gestures was subsequently manually performed with 

nother specific Unity application. In particular, the annotation 

ool allows to navigate the sequences, showing frame-by-frame the 

and’s movement. The application then allows to mark frames as 

he beginning or end of a gesture. 

. Task proposed and evaluation 

The goal of the participants was to detect correctly the gestures 

ncluded in the sequence with an online detection approach. The 

esture database captured was split as described into a training set 

ith associated annotations of gesture time stamp and labels, that 

ould be used to train the detection algorithms and a test set with 

o annotations available. Participants had to provide a list of the 

estures detected in the test set with associated labels, start time 

tamps and end timestamps. 

The results have been evaluated using different metrics. First, 

e use the Jaccard Index as proposed in other online gesture 

ecognition contests [18,23] to measure the average relative over- 

ap between the ground truth and the predicted label sequences 
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Fig. 2. Keypoints of the hand’s skeleton (red) used to calculate the features for the 

dissimilarity-based method (4.1). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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or the gesture sequences recording. If GT s,i is a vector correspond- 

ng to the time sampling of the gesture with label i filled with ones 

here the gesture is actually performed and zeros elsewhere, and 

 s,i is the corresponding prediction, the index is given by: 

I s,i = 

GT s,i ∩ P s,i 
GT s,i ∪ P s,i 

(1) 

Following our previous SHREC contest on Online Gesture recog- 

ition [2] , we defined specific metrics to obtain an estimation of 

ow the specific methods can measure the performances of a rec- 

gnizer in a typical use context, where we are interested in de- 

ecting correctly gestures with a short delay after their execution 

nd avoid false detections. We, therefore, counted the ”detection 

ate” in the test data, e.g. the percentage of predicted gestures (of 

ach class) corresponding to ground truth ones correctly detected. 

 prediction is considered corresponding to the ground truth if it 

as a temporal intersection ratio with the ground truth one higher 

han 0.5 and the same class label. We then measure also the false- 

ositive ratio, i.e. the ratio between the number of gestures (of a 

articular class) predicted and not corresponding to ground truth 

nes divided by the total number of gestures of that class in the 

equences. 

. Participants and methods 

Five research groups were registered for the contest and sent 

esults, but one retired after the evaluation. Each group sent up to 

hree annotation files that were obtained with different methods 

r parameters’ settings. The methods are described in the follow- 

ng subsection, together with the simple technique that we used as 

aseline. 

.1. Baseline: Dissimilarity-based classification 

As a baseline method, we customized an algorithm used in 

1] based on class-specific binary classifiers trained with dissim- 

larity features and a sliding window approach for online detec- 

ion. We created a gesture dictionary with the segmented labeled 

ntervals cropped from the training sequence and a set of ”non- 

esture” examples randomly cropped from non-labeled parts of the 

equences. Each gesture has been re-sampled to 20 time steps. Half 

f the data have been used as the representation set for the dis- 

imilarity vectors estimation. 

Given the re-sampled gestures, we define four sets of dissimi- 

arity vectors: 

• palm trajectory dissimilarity: for each gesture of the represen- 

tation set, we estimate the sum of the Euclidean distances of 

the corresponding points in query one. Given N gestures in the 

representation set, we get N features for the query gesture de- 

scriptor. 
• hand articulation dissimilarity: first we estimate the evolution 

of distances between adjacent fingertips and between fingertips 

and the palm keypoint ( Fig 2 ). We then calculate 9 dissimilar- 

ity components as the sums over corresponding time samples 

of the differences between the values of the 9 distances in the 

query and in the representation set gestures. 
• palm trajectory length dissimilarity: the difference in length be- 

tween the query gesture and the representation set gestures. 
• palm velocity dissimilarity: the sum of the differences of the 

velocity magnitude samples at corresponding time steps, 

For each gesture class, we train class-specific linear SVM classi- 

ers using binary labels (gesture vs non-gesture). 

During the online gesture recognition, we use a sliding window 

pproach. To detect gestures at time t we give as input for each 

rained classifier, the hand pose samples cropped in the window 
203 
overing the interval [ t − l(c) , t] , where l(c) is the average dura-

ion, in frames, of the gestures of class c in the training set, re- 

ampled in 20 steps. Windows are sampled every 6 frames of the 

riginal sequence. If a gesture is detected, we assign it a duration 

qual to l(c) . If a gesture is detected in multiple consecutive frames 

he predictions are merged and the estimated duration is incre- 

ented by the number of consecutive detections multiplied by the 

indows sampling step. 

.2. Group 1: Transformer network based method 

.2.1. Method description 

Group 1 proposed a dynamic gesture recognition system based 

n the Transformer model [17] . The framework is based on differ- 

nt type and combinations of features. The first group of features 

re provided by the Leap Motion SDK and consist in the 3D position 

f the hand joints. They enrich this features computing the joint 

elocity and acceleration. At time t , given the sequence of the 3D 

osition of the i -th joint J t 
i 

= (x t 
i 
, y t 

i 
, z t 

i 
) , speed s and acceleration

 are computed following these formulas: 

s t 
i 
= 

[
x t 

i 
− x (t−1) 

i 
, y t 

i 
− y (t−1) 

i 
, z t 

i 
− z (t−1) 

i 

]
a t 

i 
= 

[
x t 

i 
− 2 x (t−1) 

i 
+ x (t−2) 

i 
, y t 

i 
− 2 y (t−1) 

i 
+ y (t−2) 

i 
, 

z t 
i 
− 2 z (t−1) 

i 
+ z (t−2) 

i 

]
Moreover, at time t the joint-to-joint 3D distances expressed as 

 matrix D of size 3 × N × N , where N is the total number of the

and joints, is also computed. Each element d k, j,z ∈ D is computed 

s: 

 k, j,z = 

√ 

(J t 
k,z 

− J t 
j,z 

) 2 , k, j ∈ N, z ∈ [0 , 3] (2) 

herefore, the final dimension of the input feature vector depends 

n the types of the feature used. A feature vector composed by the 

and features provided by the Leap Motion device and the speed 

nd acceleration has size of 240. Including the 3D position and ro- 

ation of each hand joint the feature vector has a size of 640. 

As pre-processing, Group 1 tested two different normalization 

echniques. In the first one, they normalized the joint positions in 

 per-instance manner to obtain a per-axis zero mean and unit 

ariance. In the second one, they additionally divided each joint 

osition by the hand “size”, set as the distance between the joints 

ndexA and pinkyA , before the zero mean and unit variance normal- 

zation. 

At inference time, the network predicts the current gesture on 

 single-step time scale and a Finite State Machine (FSM) is used to 
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1 The overall accuracy of the method on the SFINGE3D dataset was 0.74. 
etect the beginning and the end of each gesture. Group 1 pro- 

ided three different version of the presented algorithm: in the 

rst and second cases, the feature vector is composed of the hand 

eature and speed and acceleration and then normalized using the 

wo operations above mentioned. In the third case, all types of fea- 

ures normalized with zero mean and unit variance are included. 

.2.2. Model architecture 

The proposed method is composed of a transformer mod- 

le [17] (with internal dropout), followed by a fully connected 

ayer applied to each step output which predicts the gesture class 

including the class “no-gesture”). 

Formally, the model can be defined as: 

 ( x ) = F ( Encoders ( x + P E)) (3) 

here F (·) corresponds to the fully connected layer that performs 

he gesture classification and the following softmax layer, applied 

o each time step x ∈ x , Encoders (·) represents a sequence of 6 

ransformer encoders E, defined in the following, and PE is the 

ositional Encoding [17] , used to encode the temporal information 

nto the sequence. Thus, Y ( x ) is a vector containing a probability 

istribution over n gesture classes for each time step included in 

 . 

Each transformer encoder is defined as 

(x ) = Norm (x + FC ( mhAtt (x ))) (4) 

here Norm (·) is a normalization layer, FC (·) are two fully con- 

ected layers with 1024 units, followed by a ReLU activation func- 

ion. The multi-head attention block mhAtt is the self-attention 

ayer defined as 

hAtt (x ) = ( Att 1 (x ) � . . . � Att 8 (x ) ) W 

O (5) 

here 

tt i (x ) = softmax 

( 

Q i K i √ 

d k 

) 

V i (6) 

ere, Q i = xW 

Q 
i 

, K i = xW 

K 
i 

, V i = xW 

V 
i 

are independent linear pro-

ections of x into a 64-d feature space, d k = 64 is a scaling factor

orresponding to the feature size of K i , � is the concatenation op- 

rator and W 

O is a linear projection from and to a 512-d feature 

pace. 

.2.3. Training 

Since in the training data the large majority of frames are la- 

elled as “no-gesture”, Group 1 uses the Focal loss [12] which has 

een shown to handle well unbalanced training datasets. In this 

ase, they empirically verified that the recognition accuracy was 

igher using this loss against the standard Categorical Cross En- 

ropy loss. We train the model using Adam [9] as optimizer with 

 learning rate 0.0 0 01, weight decay 0.0 0 01, and internal dropout 

et to 0.5. The features are fed to model which is trained with slid-

ng windows of 10 time steps. We train the network on the whole 

raining dataset for 5 epochs. The network hyper-parameters has 

een chosen with a k-fold cross validation (using k = 9 ). 

.2.4. Online detection 

During the testing phase, the proposed system receives one 

rame per time. Therefore, in order to detect the beginning, the end 

nd the class of a gesture, Group 1 implemented a Finite State Ma- 

hine (FSM). The input is represented by a buffer, i.e. a FIFO stack, 

ith a size of 10 frames. The FSM with 4 states, as depicted in

ig. 3 and it is running when the buffer is full of frames. 

In the first state, the beginning of a gesture is detected. Each 

rame is classified by the proposed Transformer architecture and 

hen, if even just a single frame is classified as gesture, the current 

tate of the FSM is increased. 
204 
In the second state, a check on the beginning of the gesture 

s conducted. If not enough gestures are found in 10 consecutive 

indows, the FSM returns in the initial state. If at least 5 gestures 

re detected in 10 consecutive windows, the FSM goes in the third 

tate. If the end of a gesture is found, the FSM passes directly on 

he fourth state. This last case is related to the possible presence 

f gestures with a very limited duration. 

In the third state, the end part of the gesture is detected. The 

nd of a gesture is an entire windows that does not contain any 

rame classified as gesture. In that case, the FSM passes to the 

ourth state. 

In the fourth state, the end of the gesture is verified. Indeed, 

nly if 25 consecutive windows do not contain any gesture, the 

esture is considered completely ended. We note that this amount 

f windows correspond to 0.25 seconds given the acquisition frame 

ate of the Leap Motion device (25 fps). This state improves the 

tability of the end gesture detection. The method and the results 

ave been computed using an Intel(R) Core(TM) i7-7700K CPU @ 

.20GHz CPU and an Nvidia GTX 1080 Ti GPU. 

.3. Group 2: Image based methods 

.3.1. Introduction 

The two methods proposed by the Group 2 team are based on 

he transformation into images of the skeleton data captured by 

he Leap Motion sensor and their use for the training of a Convo- 

utional Neural Network (CNN). The raw data points of the hand 

keleton are rendered using a custom 3D visualizer: the images 

hat constitute the dataset are captured by projecting the 3D skele- 

on on the xy plane. This view plane corresponds to the view from 

bove which therefore represents the hands in a ”natural” way, as 

 person normally sees them, and is kept constant throughout the 

mage generation phase and at inference time. This approach has 

he substantial advantage of not requiring any labour-intensive fea- 

ure engineering phase, so for the addition of new dynamic hand 

estures to the vocabulary, the generation of the corresponding im- 

ges and the retraining of the network is sufficient. 

In order to provide temporal information to the network, the 

ecent history of the gesture is represented by the fingertips traces 

f the hand. For the construction of the training set both the ges- 

ures of the SHREC ’21 dataset and the gestures in the SFINGE3D 

ataset were used. 

The first method used was described in detail in [1] : this 

ethod, which involves the use of a ResNet-50 for the classifica- 

ion of the rendered images, was retrained on the overall dataset 

xactly as described in the paper. In the inference phase, the same 

onfidence thresholds used in the paper were also adopted. As 

hown in [1] , the disadvantage of this method is that the entire 

emporal dimension of the gesture is condensed into the two- 

imensional image in the form of fingertip traces. Although this 

s sufficient for the inference of some types of gestures 1 , it is not

or others, especially for those of typically very short duration or 

hich develop mainly along the z axis ( grab , pinch , tap ) and there-

ore leave a minimal trace on the xy plane. Another disadvantage of 

his method is that the recognition is not continuous, but typically 

ccurs every 300 frames (parameter to be fine-tuned depending on 

he dataset) to limit the number of false positives. 

The second method proposed was therefore fundamentally con- 

eived to compensate for the shortcomings of the first method: 

n particular, the lack of a true temporal dimension in the first 

ethod of inference led us to the training of a ResNet-3D [6] , 

herefore able to perform 3D convolutions on volumes consist- 

ng of sequences of two-dimensional images. As for the previous 
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Fig. 3. Visual description of the Finite State Machine implemented for the online gesture recognition. 
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ethod, a significant offline data augmentation phase has been 

arried out for this method: during the generation of the training 

equences, the images of the hands and fingertip traces were trun- 

ated in different moments in time to make the gestures incom- 

lete. The continuous skeleton sequences were also sampled every 

 or 5 frames to produce the rendered images: this sampling was 

hosen to ”compress” the longer gestures (some longer than 200 

rames) into a shorter time span and as a further data augmen- 

ation. Noise was also added indipendently in the single rendered 

mage, in the form of points around the skeleton of the hand to 

imulate residual traces of gestures. 

This further data augmentation step has been added not only 

o help the ResNet-3D 50 converge to a robust solution 

2 but also 

o try to better exploit the large model capacity of this class of 

etworks. 

This offline data augmentation phase led to the generation of 

2,720 image sequences (saved in WEBP format to optimize for 

pace) that were randomly divided with an 80%/20% split to form 

raining and validation sets. This phase is separate from the stan- 

ard online data augmentation step that occurs during network 

raining (resize, crop, rotate, warp, brightness, contrast, saturation). 

The sequence length was set to 10 frames 3 and sequences 

horter than seq _ len frames were padded with black frames, while 

mage sequences longer than seq _ len were sampled randomly to 

erform further online data augmentation. 

Network training was performed using the popular Fast.ai v2 li- 

rary [7] based on Pytorch, and the progressive resizing [4] tech- 

ique to optimize network convergence times. Using this tech- 

ique, the training was carried out on images scaled progressively 

o 1 
8 , 

1 
6 , 

1 
4 , 

1 
3 of the original resolution of 1920x1080, for each 

raining round on the network. All training rounds of the net- 

ork took place in ”frozen” mode, thus training only the 19-neuron 

untrained) output layer of the network for 1 epoch. For the last 

ound, the network was also trained in ”unfrozen” mode, thus 

raining all the layers of the network for a total of 7 epochs. The 

ptimizer used was Adam and as the loss function we chose La- 

elSmoothingCrossEntropy. LabelSmoothingCrossEntropy is defined 

s: 

s loss = (1 − ε) ξ (i ) + ε
∑ ξ ( j) 

N 

(7) 
2 This kind of network has 46.4 million parameters [10] , almost double their 2D 

ounterpart. 
3 With seq _ len = 10 , the network was trained with tensors of type 

orch.Size ([ bs, ch = 3 , seq _ len = 10 , h, w ]) 

f

4

F

205 
here ξ ( j) is cross-entropy of x and i is the correct class. Through 

abelSmoothingCrossEntropy we try to compensate for noisy labels 

n the training set: instead of wanting the model to predict 1 for 

he correct class and 0 for all the others, we teach it to predict 

 − ε for the correct class and ε for all the others, being ε a small 

ositive constant and N the number of classes of the problem. 

The training took place on a GPU node of the new high- 

erformance EOS cluster located within the University of Pavia. 

his node has a dual Intel Xeon Gold 6130 processor (16 cores, 

2 threads each) with 128 GB RAM and 2 Nvidia V100 GPUs with 

2 GB VRAM each. The training took place using PyTorch’s Data- 

arallel mode, so the batch size for the different training rounds 

as set to 32, 16, 8, 4 respectively to best occupy all the 64 GB

f VRAM available on the two GPUs. The learning rate was set 

o 1e −2 , 1e −2 , 1e −2 , 1e −4 respectively for the ”frozen” training 

ounds and 4e −4 for the 7 ”unfrozen” epochs in the last round of 

raining. The final accuracy of the model used for the submission 

as 0.963 against the validation set. 

Unfortunately, although these methods are promising in terms 

f approach to the problem, the short duration of the contest did 

ot allow the team to optimize the results. As for the first method, 

t would probably have been sufficient to slightly lower the con- 

dence threshold to consider a gesture as recognized to raise the 

ositive detection score (possibly to the detriment of the false pos- 

tive score which is still sufficiently low). The main problem of the 

econd method, on the other hand, is certainly the too short se- 

uence length: during the training the spatial resolution was priv- 

leged to the detriment of the temporal one and this did not allow 

he network to have sufficient context to learn. It is necessary to 

xplore the trade-offs between spatial and temporal resolution to 

erify under which conditions the network learns best. 

.4. Group 3: uDeepGRU and TSGR 

.4.1. Introduction 

For this track, Group 3 submitted results obtained from two dif- 

erent methods: the improved uDeepGRU model [2,13] as well as 

 novel method dubbed Temporal Shift Gesture Recognizer (TSGR). 

oth of their methods are based on deep neural networks. In the 

ollowing they provide an overview of each one. 

.4.2. uDeepGRU 

Group 3 introduced the improved version of uDeepGRU [13] . 

ig. 4 depicts the network architecture of the improved model. 
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Fig. 4. The improved uDeepGRU architecture which consists of an encoder network and a classification subnetwork. 
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4 Except for the very first layer, where tanh () is used 
The uDeepGRU model is based on recurrent neural networks 

RNN) and uses unidirectional gated recurrent units (GRU) as its 

ain building block. Frames of a gesture sequence are sequen- 

ially fed to the network, and the network outputs the predicted 

abel for every frame. Concretely, the network takes as input the 

eature vector x t at time step t and produces the output label ̂ 

 t ∈ { None } ∪ C , where C is the set of all possible gestures in

he dictionary and None indicates a no gesture. The the transition 

quation for each GRU cell in the uDeepGRU model is defined as: 

r t = σ
((

W 

r 
x x t + b r x 

)
+ 

(
W 

r 
h h (t−1) + b r h 

))
 t = σ

((
W 

u 
x x t + b u x 

)
+ 

(
W 

u 
h h (t−1) + b u h 

))
c t = tanh 

((
W 

c 
x x t + b c x 

)
+ r t 

(
W 

c 
h h (t−1) + b c h 

))
 t = u t ◦ h (t−1) + 

(
1 − u t 

)
◦ c t (8) 

here σ is the sigmoid function, ◦ denotes the Hadamard product, 

 t , u t and c t are reset, update and candidate gates respectively and 

 

q 
p and b 

q 
p are the trainable weights and biases. The initial hidden 

tate tensor h 0 of all the GRUs in our model is initialized to zero. 

The improved uDeepGRU model introduces two main changes 

ompared to the original implementation in [2] . First, there is an 

xtra feature extraction layer at the beginning of the model. This 

ayer consists of a fully-connected (FC) layer with tanh () activa- 

ion. Given x t , the feature vector of an input frame at time step t ,

his layer computes f t = tanh 

(
x t W 

T + b 
)
, where W and b are train-

ble weights and the bias term respectively. The goal of this fea- 

ure extraction layer is to increase the feature extraction capacity 

f the model. Second, the training objective function for this model 

s the focal loss function [12] . This loss function was originally pro- 

osed for problems with unbalanced labeled data. The online ges- 

ure recognition problem is an example of such unbalanced data, 

s many frames obtained from an input device are typically non- 

estural interactions. Focal loss attempts to dynamically weight the 

tandard cross-entropy loss to dampen the effect of well-classified 

xamples on the final loss value. For a model which outputs p as 

he probability of a given class label, the focal loss is defined as: 

 focal = −(1 − p) γ log (p) (9) 

here γ ≥ 0 determines how much emphasis is put on misclas- 

ified examples. We use γ = 1 in our implementation and train 

DeepGRU end-to-end. 
206 
.4.3. TSGR 

Although RNN-based models have demonstrated great capabil- 

ties in sequence modeling and prediction tasks, they suffer from 

 few critical drawbacks. Namely, RNNs rely on their hidden state 

ensors for modeling the relationships across different time steps 

f their inputs. Also, most RNN-based models suffer from prob- 

ems such as vanishing or exploding gradients which make them 

ifficult to train. 

To address these issues, Lin et al. [11] recently introduced the 

emporal Shift Module (TSM) an alternative sequence modeling 

aradigm using the temporal shifting of input features. The basic 

dea behind such methods is simple, yet powerful: at each time 

tep during the processing of a temporal sequence, replace a por- 

ion of the features of the current time step with those of other 

ime steps via shifting those features across the temporal dimen- 

ion. This allows the network to perform temporal modeling across 

xtracted features. Depending on the task, the shifting operation 

an either be bidirectional or unidirectional. Unidirectional shifting 

s suitable for online recognition tasks as during recognition, only 

he features of the prior time steps are available. 

Based on this idea Group 3 devised TSGR, their second online 

esture recognizer. The TSGR model is depicted in Fig. 5 . Similar to 

DeepGRU, our TSGR model takes the input features for every time 

tep and produces the output class prediction. This model, which 

s conceptually simpler than uDeepGRU, consists of only FC layers 

ith TSM layers in between. Each TSM layer replaces half of the 

eatures of the current frame with those of the past 5 th frame. This 

mplies that the amount of feature shifting in our model is five 

rames. Although the original TSM model [11] shifts the features 

y one, Group 3 experimentally found five shifts to work better for 

his track’s data. 

We refer to the combination of FC and TSM layers as shift nodes 

SN) henceforth. Each SN consists of a TSM layer along with two FC 

ayers, namely FC Shift and FC Residual with ReLU() activations 4 . The 

imensionality of both FC layers is the same, however FC Residual 

ayers do not include a bias term. The sequence of operations in- 

ide each node is as follows. At each time step t , the node takes 

he feature vector f t , performs the shifting operation by replac- 

ng half of the values in f t by those computed for f t−5 . The node

hen passes these features through FC Shift and saves the intermedi- 

te results f Shift 
t . The node also computes and stores the interme- 

iate result f Residual 
t = FC Residual 

(
f t 
)
. The final output of the node 

s computed as f SN 
t = f Shift 

t + f Residual 
t . Additionally batch normal- 
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Fig. 5. The TSGR architecture which consists of an encoder network and a classification subnetwork. Each shift node (SN) has access only to the features of the previous 

time steps in that same layer. 
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Fig. 6. Spatial-temporal graph neural networks for hand gesture recognition. 
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zation [8] is applied before the final result is passed to the next 

ayer. Similar to uDeepGRU, we optimize the focal loss function to 

rain TSGR end-to-end. 

.4.4. Implementation and training 

Each frame of the data is treated as one 60-dimensional vector 

 t obtained by concatenating the 3D position of all joints. Every 

eature vector was z-score normalized using the mean and stan- 

ard deviation of all feature vectors in the training set. 

Group 3 implemented their models in PyTorch. Both models are 

rained end-to-end on the training set, with six random sequences 

ithheld for validation. Training was done using the Adam opti- 

izer [9] with a learning rate of 0.0 0 02 and a mini-batch size

f 10. The maximum length of a training sample was fixed to 

56 (longer samples were split to chunks of at most 256 frames). 

ounter-intuitively, they found any kind of data augmentation on 

he training set to be harmful. After training concluded, we saved 

he model that produced the best F 1 score on the validation set. 

.4.5. Results 

At test time, Group 3 runs each test sample through the net- 

ork and obtain per-frame class labels ˆ y t . They do not perform 

ny post-processing on the output results and the hardware used 

or the compute the results is a AMD Ryzen 3900x processor and 

n NVIDIA Titan RTX GPU with 24 GB VRAM. 

They obtained three sets of results. The first set consists of the 

esults of an ensemble of 10 uDeepGRU models, each trained on a 

ifferent portion of the training set. The second set is the classifi- 

ation labels obtained from a single TSGR trained model, and the 

ast set contains the results of an ensemble of 15 TSGR models, 

ach trained on a different portion of the training set. 

.5. Group 4: Spatial-Temporal Graph Convolutional Netoworks 

.5.1. Data preprocessing 

Based on the task description, the dataset is mixed with ran- 

om hand movements between real gestures. Group 4 added those 

oisy segments labeled as non-gestures into the training procedure 

o improve robustness of the model. Next, they extract both ges- 

ures and non-gestures data with a length of 200 frames for each 

egment. Due to the limitation on training data, a stratified 5-fold 

ased on class-distribution is applied to avoid under and over fit- 

ing. 
207 
.5.2. Classification model: Spatial-Temporal Graph Convolutional 

etoworks 

Spatial-Temporal Graph Convolutional Networks (ST-G CN) 

20] is an extended version of graph neural networks to a spatial- 

emporal graph model. The graph can learn patterns embedded in 

he spatial configuration by exploring locality of graph convolution 

s well as temporal dynamics. As proposed by Yan et al., Group 

 constructs a sequence of skeleton graphs, each node represents 

 joint of the hand. Moreover, there are spatial edges for building 

p the connectivity of joints according to natural structure of hu- 

an hands and temporal edges connecting the same joints across 

ontinuous frames of actions, described as Fig. 6 . Also, each node 

as its own features composed of 3D coordinates and quaternions. 

n the classification module using ST-GCN, features of a joint at 

rame t is a vector with length 7 consist of [ x, y, z, a, b, c, d] where

x, y, z) expresses 3D coordinates and a quaternion q is described 

y q = a + bi + c j + dk . 

In the detection module, we only use (x, y, z) to indicate poten- 

ial candidates. 

.5.3. Energy-based detection module 

With respect to detection and localization module, Group 4 

ses a non-deep learning approach by leveraging the shift of every 

oint of human hand over sequences of consecutive frames. They 

efine an energy-based function to calculate the amount of energy 
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Fig. 7. 2D Trajectories of hand gestures. 

Fig. 8. Cosine similarity between gradient histograms. 
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ccumulated in a window of length L inside the gesture stream: 

(w ) = 

N ∑ 

n =1 

L ∑ 

t=1 

√ 

( 
w 

x 
n,t 

w 

x 
n,t−1 

− 1) 2 + ( 
w 

y 
n,t 

w 

y 
n,t−1 

− 1) 2 + ( 
w 

z 
n,t 

w 

z 
n,t−1 

− 1) 2 

(10) 

Index t ranges from 1 to L. n is the index of the hand joint 

anging from 1 to N. So, w 

x 
n,t represents the x-coordinate of n th 

oint at frame t . 

Using Eq. 10 , Group 4 adopted a sliding window approach, es- 

imating the value of E(w i ) on multiple windows w i of length L 

tarting at different locations, with consecutive windows w i , w i +1 

eparated by a fixed stride step. 

Authors then take as candidate gestures all the windows corre- 

ponding to local maxima of the energy, e.g. those satisfying the 

ollowing conditions: 

δE(w i ) < ε, (11) 

E(w i −1 ) > 0 , 

E(w i +1 ) < 0 

E(w i ) is the time derivative of energy of segment w i , approxi- 

ated by: 

E (w i ) = 

E (w i +1 ) − E(w i −1 ) 

(i + 1) − (i − 1) 
(12) 

After detecting possible segments, Group 4 feeds those candi- 

ates into the ST-GCN model. Those segments that are predicted 

o belong to a non-gesture class with confidence score > thresh- 

ld α or be a member of gesture classes with confidence score < 
208 
hreshold β are filtered. Threshold α and β are chosen based on 

he validation data. 

.5.4. Trajectory-based fine-tuning with PCA and gradient histogram 

Group 4 noticed that some gestures can be easily classified by 

everaging their trajectory. Among the 20 joints of a human hand 

n the dataset, they chose IndexEnd of an index finger to consider 

ction’s trajectory for gestures: CIRCLE, V, CROSS, DENY. The prin- 

ipal component analysis is applied to reduce 3D coordinate to 2D 

ystem, see Fig. 7 . 

Next, those sequences of 2D coordinates are utilized to find gra- 

ient vectors with Ox and Oy axis and their angles. A histogram 

ith N bins ranging from −π/ 2 to π/ 2 is computed on the fre-

uency of calculated angles [15] . This 1D orientation histogram is 

iewed as a feature vector of each gesture. With regard to the 

raining set, every class of gestures comprises some segment mem- 

ers that belong to this class. Thus, each class of gesture is repre- 

ented by the mean histogram feature vector of its members. In 

he inference phase, they extract the gradient histogram feature 

ector of every candidate segment and then compare it with each 

lass’s representation vector using Cosine Similarity, described as 

ig. 8 . Finally, the highest similarity score is ensembled with con- 

dence score from the ST-GCN model and the predicted label is 

eturned. 

.5.5. Experiments 

Group 4 did experiments on single ST-GCN models, k-fold mod- 

ls, and ensemble models as well. Finally, they chose 3 configura- 

ions of them that correspond to 3 RUNS. 

• RUN1: Single ST-GCN model. 
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Table 1 

Average scores obtained by all the proposed techniques on the test sequences and corresponding execution times for the classification of all the test data and for a single 

prediction at a given sequence point (online detection). Bold fonts indicate best results. 

Method Det. Rate FP Rate Jac. Ind. Tot.Time(s) Class.Time(s) 

Baseline 0.3993 0.7639 0.2566 1161.0 0.08 

Group 1 - Run 1 0.7014 0.3576 0.5501 435.5 1.36 

Group 1 - Run 2 0.6875 0.5521 0.4737 435.5 1.36 

Group 1 - Run 3 0.7292 0.2569 0.6029 435.5 1.36 

Group 2 - Run 1 0.4861 0.9271 0.2772 48781.0 0.41 

Group 2 - Run 2 0.4931 0.1667 0.4458 4897.2 0.81 

Group 3 - Run 1 0.6042 0.3021 0.4987 66.7 0 . 6 × 10 −4 

Group 3 - Run 2 0.7569 0.3403 0.6194 0.4 0 . 3 × 10 −5 

Group 3 - Run 3 0.7431 0.2708 0.6238 5.1 0 . 4 × 10 −4 

Group 4 - Run 1 0.8403 0.0903 0.7925 94.6 0 . 6 × 10 −2 

Group 4 - Run 2 0.8750 0.0556 0.8353 281.4 0.03 

Group 4 - Run 3 0.8993 0.066 0.8526 289.2 0.16 

Fig. 9. Jaccard index per class on all the test sequences. 
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(CPU Intel core i5-8300H 2.3GHz with Turbo Boost up to 

4.0GHz) 
• RUN2: ST-GCN model with stratified 5-fold. 

(GPU Tesla P100 16GB) 
• RUN3: 5-fold ST-GCN models ensemble with gradient his- 

togram. 

(CPU Intel Core i5-8300H 2.3GHz with Turbo Boost up to 

4.0GHz) 

. Evaluation results 

A summary of the results for each group, averaged over all the 

estures, is presented in Table 1 . The table also shows the results 

f the execution time of the methods by reporting the Total Time 

nd the Classification Time. The first is a measure of the time each 

ethod takes to compute results for the entire test set (i.e. all the 

equences), the second, is a measure of the average time needed, 

or each method, to perform a single gesture classification. Times 

how that all the methods are suitable for real-time applications, 

ven if the performances are not directly comparable as the soft- 

are has been executed on different architectures. 

The methods based on ST-GCN provide clearly the best perfor- 

ance, and it is interesting also to note that the combination of 

he network based method with simple heuristics is able to im- 

rove the scores. These methods also provide a low number of 

alse positives, that are instead not negligible in the other meth- 

ds. 

To better understand the outcomes of the different techniques 

t is useful to analyze the scores related to the single gesture 

lasses. 

The bar charts in Figs. 9 , 10 and 11 show the per-class scores of

ll the methods. 

As expected, all the methods present good performances for the 

tatic gestures (i.e. from ONE to POINTING). The average JI for these 

estures is 0.73. However, some methods result in a non negligible 

umber of false positives that could make difficult to use the tech- 
209 
iques in a practical scenario. The average false detection rate on 

tatic gestures is, in fact, 24% , meaning a false positive detected ev- 

ry 4 gesture recognized, that is quite high for practical purposes. 

The POINTING gesture is the most challenging static one, and it 

s reasonable, being the one with more relevant variations in the 

xecution. 

Dynamic gestures are much harder to recognize (average JI 0.46, 

verage FD 0.41), with the notable exception of the ST-GCN based 

ethods. As shown in Fig. 12 , considering the best run (i.e. highest 

accard Index) for each group, the results show that among the dy- 

amic gestures, those considered fine and therefore characterized 

lso by the single fingers’ trajectories (GRAB, PINCH, TAP, DENY, 

NOB, EXPAND), present further issues for most of the methods. 

T-GCN works well on most of the gesture class with just a few 

xceptions (TAP, POINTING, KNOB). 

Some surprising facts appear from the analysis of single classes: 

or example the LEFT gesture presents a very low number of false 

ositives despite being a dynamic one, while the RIGHT gesture is 

ound in a lot of false detections. 

The PINCH gesture is surprisingly detected easily and with few 

alse detections by the baseline method, and it is hardly detected 

y most of the network based techniques. 

. Discussion 

The evaluation outcomes provide useful insights for the design 

f online gesture recognizers usable ”in the wild”. The techniques 

ested provide promising scores given a limited number of anno- 

ated sequences for training. Given the short amount of time avail- 

ble for the contest this is a good result. 

A nice aspect of the submissions received is that the proposed 

ethods are quite different from each other and are exemplars 

f the principal network-based approaches proposed in the litera- 

ure for these tasks, namely Recurrent Networks, Graph Networks, 

ransformer Networks, and Convolutional Neural Networks. The 

act that Spatiotemporal Graph Convolutional networks provide the 
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Fig. 10. Detection rate per class on all the test sequences. 

Fig. 11. False Positives rate per class on all the test sequences. 

Fig. 12. Jaccard Index by gesture type (best run for each group). 
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est results is consistent with the literature on action recognition 

rom body skeletons, where the best scores on the related bench- 

arks have been obtained with similar approaches. However, on 

and gesture recognition, good results on old benchmarks have 

een obtained with modified versions of LSTM including neighbor 

nformation [14] or using 1D CNN [21] . These methods have not 

een proposed in this contest, and we plan to test them on our 

ata as future work. 

It must be noted, then, that the performances of the differ- 

nt techniques depend on hyperparameters tuning and training 

ata augmentation, and, given the short amount of time available 

or the contest, the results could be improved and the ranking 

hanged. 

In any case, it is worth noting that for all the proposed methods 

ut the ST-GCN-based dynamic gestures are not well handled and 

alse positives are a relevant issue. 

With all the methods, selected gestures were hard to be de- 

ected (e.g. TAP, KNOB, POINTING). A possible future research di- 

ection is therefore to investigate the reasons for these problems, 

hich may rely on similarities between segments of different ges- 

ures or the variability in the execution. The goal could be to create 

ptimal dictionaries for gestural interfaces avoiding the inclusion 

f ”problematic” classes. 
210 
The improvements of the ST-GCN results obtained with the ad- 

ition of simple handcrafted similarity evaluations and the fact 

hat simple handcrafted features work well on specific gestures 

PINCH) show that it is hard to have a generic method well-suited 

or the recognition of all the gesture types. A viable option to ad- 

ress this issue could be to define multiple recognizers for specific 

estures. 

Problems with dynamic gestures could also derive from the lim- 

ted numbers of training sequences and subjects performing the 

estures and from the fact that the users performing the gestures 

n the test set were not involved in the recording of the training 

et. The availability of larger and more varied training sets could 

e exploited to increase the detection performances. However, for 

he practical use of recognizers in interface design, the availabil- 

ty of gesture recognizers that can be trained with few examples 

ould be particularly useful. 

Another aspect that should be investigated is related to the 

omputational load required for the online classification. While all 

he networks can be used for online recognition on a high-end PC, 

he possibility to have them running on Hololens or Oculus Quest 

eeds to be checked. 

We plan to update the dataset by adding new data. Further- 

ore, while the current gestures were recorded within a contin- 

ous gesticulation, but separated by non-gesture actions, we want 

o record sequences with series of adjacent gestures and design a 

ew task involving the detection of series of atomic gestures. 

. Conclusions 

The development of effective and flexible gesture recognizers 

ble to detect and correctly classify hand gestures of different 

inds is fundamental not only to enable advanced user interfaces 

or Virtual and Mixed Reality applications, but also, for example, 

o enable the realization of touchless interfaces like public kiosks, 

hat are expected to replace touch-based ones after the emergence 

f the pandemic issues, being a more hygienic and safer solution. 

t is, therefore, important to support the research on this kind of 
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ool, developing benchmarks able to test the algorithms on realis- 

ic user scenarios. The SHREC 2021: Track on Skeleton-based Hand 

esture Recognition in the Wild tries to do this. We believe that 

he dataset created and the methods proposed by the participants 

ill be a useful asset for the researchers working on this topic. 
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